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Abstract

The joint detection of the gravitational-wave signal GW170817 and its electromag-
netic counterparts, the gamma-ray-burst GRB170817A and the kilonova AT2017gfo,
marked the beginning of multimessenger astrophysics. This ensemble of observations
showed the unique potential of gravitational wave astronomy to enhance our under-
standing of fundamental physics laws, and to study phenomena hardly reproducible
with terrestrial experiments. Among the latter, binary neutron star observations
opened a new window to explore the extreme density regimes reached by nuclear
matter within the stellar cores.

In this thesis we carried out a new study aimed to infer direct information
on the properties of nucleon dynamics at supra-nuclear densities exploiting joint
gravitational-wave and electromagnetic observations. In particular, we built a numeri-
cal pipeline which combines the information carried by the inspiral gravitational-wave
signal, with the post-merger kilonova emission, to directly probe the behavior of
three-body nucleon repulsive forces within the neutron cores. The amplitude of
such interactions, which we introduced in our equation of state as a free parameter,
determines the stiffness of nuclear matter, and hence the stellar observables. We
analysed both simulated and real gravitational wave and kilonova datasets, focusing
for the latter on GW170817 and AT2017gfo. For mock signals, we applied our
pipeline to current and future detectors comparing their sensitivity to constrain
the microphysical features of the equation of state. Our results show that the
introduction of a 3rd generation interferometer, such as the Einstein Telescope, leads
to remarkable improvements on the accuracy with which the properties of nucleon
dynamics can be inferred. Working with real observations, our analysis provides
the first constraint on repulsive three-body nucleon forces based on GW170817
multimessenger data. These results support stellar configurations with mildly-stiff
equations of state, and are fully consistent with other constraints derived from
gravitational-wave and electromagnetic analyses.
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Chapter 1

Introduction

Neutron stars (NS) are among the most compact objects in the Universe. Matter
within their cores is compressed to such a degree that it may exceed several times
the density of atomic nuclei, ρ0 = 2.7 · 1014g/cm3, and its behaviour, encoded by
the so-called equation of state (EoS), is challenging to constrain, at present time,
with terrestrial experiments.

Neutron stars can evolve as binary systems and eventually coalesce through
the emission of gravitational waves (GWs), which subtract energy and angular
momentum from the binary, leading its orbital separation to shrink up to the
merger. Gravitational waves are ripples in the space-time which travel at the speed
of light, produced by time-varying distribution of matter and energy with a certain
degree of asymmetry, and represent a gold mine of information on the properties of
astrophysical compact objects. Indeed, unlike electromagnetic radiation, they weakly
interact with any astrophysical environment between the source and the observer,
leaving all the information on the former almost intact. For NS binaries, the equation
of state leaves a detectable footprint on the emitted gravitational waves through
tidal interactions, which act predominantly in the late stages of the coalescence,
deforming the NSs and affecting their orbital evolution. The magnitude of the
deformations is proportional to the so-called Love Numbers [Thorne & Campolattaro
(1967); Hinderer (2008)], a set of quantities which depend on the stellar internal
composition. Measurements or constraints on such parameters from GW signals
emitted by coalescing binaries can therefore provide valuable insight on the NS
EoS and and help to disentangle the different models of nuclear matter proposed in
literature, to date highly degenerate.

Alongside the GW emission, the coalescence of a NS binary is expected to power
several other signals in the electromagnetic spectrum, such as the kilonova, a quasi-
isotropic thermal emission observable in the UV-optical-infrared band and produced
by the radioactive decay of the neutron-rich matter ejected in the coalescence. The
ejection dynamics, and ultimately the kilonova features, depends on the composition
of the binary progenitors (Metzger, 2020), and therefore offer a view on the stellar
EoS complementary to the information carried by the Love numbers.

The study of the synergy between these two messengers, made possible after the
combined detection on August 17 2017 of the GW event GW170817 (Abbott et al.,
2017a) and its two electromagnetic counterparts, the gamma-ray burst GRB170817A
and the kilonova AT2017gfo, is the main focus of this project. The goal of the thesis is
twofold: (i) develop a data-analysis strategy to combines EOS-dependent observables
from the inspiral phase of the coalescence and the post-merger kilonova emission
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(ii) apply such approach to current and next generation of interferometers, like the
Einstein Telescope, to determine their ability to constrain the behavior of nucleon
dynamics above the saturation density. To these aims we built a numerical pipeline
that combines the posterior distributions of the tidal deformability, a convenient
quantity defined from the star mass, radius and Love Numbers and measured by
GW observations, with the constraints inferred on parameters which determine
the properties of kilonova spectra. Our goal is to exploit such data to constrain a
specific feature of the EoS, namely the strength of the repulsive three-nucleon forces
at supranuclear densities. The latter is encoded in our baseline model by the free
parameter α , which we hierarchically infer from the multimessenger observations
described above.

Our analysis can be thought as composed of three parts. In the first part, we
define an injection campaign of simulated GW signals based on the properties of
GW170817 and GW190425 for the different detector configurations using bilby ,
a LIGO-Virgo Python library designed for Bayesian inference of compact binary
coalescence events, and discuss the accuracy to which the injected values of α are
recovered from the GW signals in the different scenarios. In the second part we
change focus to the kilonova AT2017gfo and obtain the posterior of the NS tidal
deformabilities, masses, and, ultimately, of the parameter α also generalizing this
procedure to mock kilonovae spectra which could be produced by events similar to
GW170817 and GW190425. In the third part we combine the studies conducted
on the two emission channels tackled the first and second part introducing a novel
approach to provide a multimessenger estimate of the parameter α . We tested this
method both on the observed data of the GW170817 and its kilonova AT2017gfo,
and on GW and kilonova mock signals.

The thesis is structured as following. In Chapter 2 we review the NS structure
and introduce the basic formalism needed to solve the relativistic equations of stellar
structure in General Relativity, as well as to compute the Love Numbers both in
a Newtonian and Relativistic framework. Furthermore, we describe the properties
of the EoS currently understood and the baseline model chosen to describe nuclear
interactions in the stellar cores, reviewing the dependence of the NS observables
on the microphysical properties of nucleon dynamics. In Chapter 3 we discuss the
evolution of a binary NS merger and describe the features of its GW and kilonova
emission explaining how they are connected to the NS properties. In Chapter 4 we
introduce the Bayesian inference approach based on Monte Carlo Markov Chains
simulations, which were used to recover the posterior of α from measurements of
the NS tidal deformabilities and masses obtained by GW observations. Finally, in
Chapter 5 we present and discuss the results of our analyses. Conclusions and the
future prospects of the work are presented in Chapter 6.
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Chapter 2

Neutron stars

2.1 Origin and composition
Neutron stars represent the endpoint for the stellar evolution of stars with masses

in the interval M ∈ (8, 20)M⊙. These stars are massive enough to undergo all
the nuclear burning stages until 56Fe is synthesized from 28Si in the innermost
regions. At this stage of its evolution the star presents the "onion structure" in Fig.
2.1. No further exothermic fusions are possible and the core is so hot and dense
that heavy elements start photo-disintegrating into lighter ones. These reactions
are endothermic and further subtract energy to the core, accelerating its collapse
(Kippenhahn et al., 2012). Additionally, degenerate relativistic electrons in the core
are captured by heavy nuclei through the inverse β decay reaction

(Z,N) + e− → (Z − 1, N + 1) + νe , (2.1)

gradually producing more neutron-rich nuclei(neutronization process). When the
nuclei become too neutron rich they start to break up, releasing free neutrons in the
environment. This neutron drip takes place when the central density of the core is
ρc ≳ 1011 g/cm3. At ρc ∼ 1014 g/cm3 the degenerate neutron core is so rigid that
it is almost incompressible and the outer layers of the stars falling onto it bounce
back, producing a violent shock called supernova. The remnant of these explosion is
a nebula at the center of which sits the dead core of the massive star, the neutron
star. The latter is a very compact objects having a typical mass between 1-2 M⊙
and radius of 10-14 km.
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Figure 2.1. Schematic illustration of the internal structure of a highly evolved massive star.
Along the vertical radius and below the horizontal radius are presented some typical
values of the mass, the temperature (in K), and the density (in g/cm3) (Kippenhahn
et al., 2012).

The model of the internal structure of a neutron star is presented in Figure
2.2. In the following we will denote the matter density of the neutron star with ρ.
Proceeding from the outermost layers to the core, i.e. towards more dense regions,
we encounter (Ferrari et al., 2020):

• the outer crust (∼ 107g/cm3 < ρ < ρd = 4 · 1011 g/cm3). This region
is composed of a lattice of heavy nuclei immersed in a gas of degenerate
electrons which provides most of the pressure. Moving towards the next layer,
density increases and electron captures become more efficient. Similarly to
the neutronization of the core of the progenitor massive star, at ρd = 4 · 1011

g/cm3 neutrons can no longer live bound to the nuclei and start leaking out
(neutron drip);

• the inner crust (ρd < ρ < ρ0 = 2.67 · 1014 g/cm3). At these densities, the
dominant contribution to the internal pressure is given by degenerate neutrons.
Matter is composed of neutron rich nuclei, free neutrons and an electron gas
which ensures charge neutrality. As the density increases matter re-arranges
itself into different configurations (called pasta phases) until ρ reaches the
nuclear saturation density, ρ0, and protons, neutrons and electrons form a
homogeneous fluid;

• the outer core (ρ0 < ρ < 2ρ0). Here matter is composed of a homogeneous
fluid of protons, neutrons and electrons in β-equilibrium, i.e. in equilibrium
with respect to the reactions:

n → p+ e− + ν̄e

e− + p → n+ νe

. (2.2)

The main contribution to the pressure is still given by neutrons which can,
however, no longer be considered as non-interacting particles.
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• the inner core (ρ ≳ 2ρ0). There is still much debate on what is the behaviour
of matter at the extreme densities reached in the inner core of a NS. At these
densities a wide variety of particles may form depending on the theoretical
model for nuclear interactions assumed. Some of these models also hypothesize
that if the density of the core reaches a value of ∼ 1015 g/cm3, quarks may no
longer be confined into nucleons or hadrons. In this case, NS matter is said to
undergo a transition of phase.

Figure 2.2. Schematic view of a NS internal structure (Ferrari et al., 2020).

As we shall see in Section 2.3, the behaviour of matter inside a NS is encoded
by its EoS. The latter is a relation between the fundamental thermodynamical
properties of the material to which it refers to, e.g. the density, temperature and
pressure. In the case of NSs, there is quite general consensus on the EoS in the regions
surrounding the core since the behaviour of matter at these densities is constrained
by experimental data on neutron-rich nulei. However, the densities reached in the
innermost regions of NSs are, presently, very hard to reach in a laboratory and
many different nuclear models are present in literature. Fortunately, these models
can be constrained, to a certain extent, by astrophysical and gravitational wave
observations of NSs. Indeed, it will be our intent in the last Chapter of this thesis to
test the nuclear model which we will describe in 2.3.2, and assess the capability of
next generation interferometers in recovering the information on nuclear interactions
from the multimessenger emission of coalescing neutron star binaries.

2.2 Relativistic overview of a neutron star
2.2.1 Basic ingredients of General Relativity

Let us set the theoretical framework in which we will describe a neutron star,
namely the one of General Relativity (GR). General relativity is the theory of gravity
formulated by Albert Einstein in 1915, based on two fundamental principles:

• Strong Equivalence Principle: at any given space-time point, it is possible to
choose a locally inertial reference frame (LIF) such that, in the vicinity of that
point, all laws of physics have the same form they would take without gravity,
i.e. the one prescribed by Special Relativity.
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• Principle of General Covariance: physical laws must have the same form in
every coordinate system, i.e. they must be generally covariant.

As stated by the Strong Equivalence Principle, in a LIF the distance between two
close points in time and space, two events, can be computed as in Special Relativity:

ds2 = −c2dt2 + dx2 + dy2 + dz2 = ηµνdx
µdxν , (2.3)

where ηµν is the Minkowski tensor

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (2.4)

while the distance between two events in a generic reference frame is computed as:

ds2 = gµνdx
µdxν , (2.5)

and gµν is called the metric tensor. The concepts of geometry and metric are
fundamental in GR and gravity indeed represents the effect of the curvature of
space-time in the presence of massive bodies. This statement is encoded in Einstein’s
equation:

Gµν = 8πG
c4 Tµν . (2.6)

In the equations above Gµν is the Einstein tensor and contains the information on
the geometry of the space-time, while Tµν is called the stress-energy tensor and
describes the energy density and flux of generic matter fields. Its components are
defined as following: T 00 is the energy density, T 0i is the energy which flows per
unit time across a unit surface orthogonal to the axis xi, and T ij is the amount of
the i-th component of momentum which flows per unit time across the unit surface
orthogonal to the axis xj . Note that the stress-energy always satisfies the so-called
GR expression of the energy and momentum conservation law:

Tµν
;ν = 0 , (2.7)

where the punctuation symbol ";" denotes the covariant derivative operator. When
applied to a generic

(2
0
)

tensor this operator gives

Aµν
;β = (∇Aµν)β = Aµν

,β +AανΓµ
αβ +AαµΓν

αβ , (2.8)

where "," denotes the standard derivative operator with respect to the chosen
coordinates, while Γα

µν are called the Christoffel symbols and are defined as:

Γα
µν = 1

2g
αλ(gµλ,ν + gλν,µ − gµν,λ) . (2.9)

The objects and the definitions just mentioned will come in hand shortly as our goal
now will be to define the equations of stellar structure for NSs in GR.
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2.2.2 Stellar equations
Let us assume the NS to be made of a perfect fluid, i.e. a non-viscous fluid in which

heat flux is absent, having a fixed chemical composition and in thermodynamical
equilibrium. We can describe the macroscopic motion of the fluid in terms of its
four-velocity uα(x) which is tangent to the worldlines of the small fluid elements.
The latter are considered to have a 3-volume which is much larger than the scale
of the typical microphysical interactions but small with respect to the macroscopic
length-scale of the system.

Let us also define a convenient reference frame which is locally inertial, i.e. a LIF,
and instantaneously comoving with a fluid element: the locally comoving inertial
frame (LICF). Since the fluid is in thermodynamical equilibrium, we can define the
following thermodynamical quantities measured in the LICF:

• n, the baryon number density;

• ϵ, the mass-energy density;

• p, the pressure;

• T , the temperature;

• s, the entropy per baryon.
Next, let us write the stress-energy tensor in this reference frame:

Tµν =


ϵ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (2.10)

The components T 0i vanish because there is no energy exchange between the fluid
element and its surroundings (no heat flow), while the absence of viscosity puts to
zero the components T ij with i ̸= j (no tangential stresses). Since in the LICF a
fluid element has four-velocity uµ = (1, 0, 0, 0) and gµν = ηµν , Tµν can be written as:

Tµν = (ϵ+ p)uµuν + pηµν , (2.11)

which is a tensorial definition and thus it is covariant for all reference frames.
Exploiting Eqns. (2.6) and the expression obtained for Tµν , we can now derive the
equations governing a non-rotating spherically symmetric star in static equilibrium.
Note that, in the following, we will use geometric units, i.e. G = c = 1.

For a star with these characteristics the metric is given by:

ds2 = gµνdx
µdxν = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdϕ2) , (2.12)

where we have used the spherical coordinates (t, r, θ, ϕ) and ν(r), λ(r) are generic
functions of the radial coordinate. Let us also note that the Einstein tensor Gµν in
Eqns. (2.6) is defined as:

Gµν =
(
Rµν − 1

2gµνR

)
, (2.13)

where the Ricci tensor, Rµν , and Ricci scalar, R, ultimately depend on the metric
and its second derivatives. Moreover, exploiting the covariancy of Eqns. (2.11), we
can obtain the expression of Tµν in these coordinate system:

Tµν = (ϵ+ p)uµuν + pgµν , (2.14)
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where gµν is the metric defined in (2.12). Note that from the normalization of the
four-velocity vector we can derive the expression of the four-velocity in the LICF:

gµνu
µuν = −1 → g00(u0)2 = −1 → u0 = e−ν(r) , (2.15)

thus, in this metric, uα = (e−ν(r), 0, 0, 0).
Other than exploiting Einstein’s equation, the calculations of the stellar equations

are simplified significantly using the GR equation of the energy and momentum
conservation law in Eqns (2.7). The only non trivial component of the latter is the
µ = r component which gives the differential equation:

ν,r = − p,r

ϵ+ p
. (2.16)

Next, we compute Gµν from Eqns. (2.13) remembering that

Rµν =
(
Γα

µα,ν − Γα
µν,α − Γα

µνΓβ
αβ + Γα

µβΓβ
να

)
, (2.17)

and
R = gµνRµν , (2.18)

also exploiting the definition of the Christoffel symbols in Eqns. (2.9).
Finally, we can write the non-vanishing components of the Einsteins equations:

G00 = 8πT00 → 1
r2 e

2ν d

dr

[
r(1 − e−2ν

]
= 8πϵe2ν

Grr = 8πTrr → − 1
r2 e

2λ(1 − e−2λ) + 2
r
ν,r = 8πpe2λ

Gθθ = 8πTθθ → r2e−2λ
[
ν,rr + ν2

,r + ν,r

r
+ ν,rλ,r − λ,r

r

]
= 8πr2 .

(2.19)

Combining Eq. (2.16) and Eqns. (2.19) we obtain the final set of equations:

dm

dr
= 4πr2ϵ(r)

dp

dr
= − [ϵ(r) + p(r)] · [m(r) + 4πr3p(r)]

r[r − 2m(r)] ,

(2.20)

where m(r) is defined as:
m(r) = 1

2r(1 − e2λ(r)) . (2.21)

The set of equations in (2.20) are known as Tolman, Oppenheimer and Volkoff (TOV)
equations. They represent the generalization of the Newtonian stellar structure
equations: 

dm

dr
= 4πr2ρ(r)

dp

dr
= −ρ(r)m(r)

r2 .

(2.22)

Thus, the first of the (2.20) represents the generalization of the Newtonian mass
continuity equation, with the mass density being replaced by the energy density.
The second of Eqns. (2.20) generalizes the equation of hydrostatic equilibrium in a
star.
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2.3 The equation of state
As mentioned in Section 2.1 the EoS is a relation between the thermodynamic

properties (temperature, pressure etc.) of a system which ultimately determines its
observable properties and depends on the microcopic interactions of nuclear matter.

In the following we will see how the EoS complements the information carried by
the TOV equations (Eqns. (2.20)) and we will describe the nuclear model considered
as our baseline model throughout the analyses in Chapter 5.

2.3.1 Thermodynamics and barotropic EoS
In 2.2.2 we have observed that by assuming the NS to be composed of a (perfect)

fluid in thermal equilibrium, we can define a set of macroscopic thermodinamical ob-
servables of the star, such as its temperature, pressure and entropy per barion. These
properties are related between one another through the first law of thermodynamics
which in a LICF is formally identical to its Newtonian expression1:

dE = −pdV + TdS , (2.23)

where E is the total energy, V is the volume of the star and S is the total entropy.
Calling A the total number of baryons, we can rewrite these quantities as

E = ϵV , V = A/n , S = sA , (2.24)

and substitute them into Eq. (2.23):

d

(
A

n
ϵ

)
= −pd

(
A

n

)
+ Td(As) . (2.25)

Finally, multiplying everything by n/A we obtain:

dϵ = ϵ+ p

n
dn+ nTds . (2.26)

We can now observe that if we choose, for instance, an EoS of the form ϵ(n, s) the
pressure and temperature can be found from the first law of thermodynamics as:(

∂ϵ

∂n

)
s

= ϵ+ p

n
→ p(n, s) = n

(
∂ϵ

∂n

)
s

− ϵ(
∂ϵ

∂s

)
n

= nT → T (n, s) = 1
n

(
∂ϵ

∂s

)
n

. (2.27)

It is, indeed, valid in general for perfect fluids with fixed chemical composition that
given the EoS, which can be expressed as the relation between one thermodynamical
variable (e.g. ϵ) and two others (e.g. s and n), the remaining variables can be found
from the first law of thermodynamics.

An EoS is said to be barotropic when it reduces to the relation p ≡ p(ϵ) or,
equivalently, ϵ = ϵ(p). From what we have just said we might not expect the NS
EoS to be barotropic. However, we will now briefly explain why this still provides a
reliable approximation for realistic stars. First, in 2.1 we have mentioned that a NS is
mainly sustained by the degenerate pressure of neutrons. Indeed, the degeneracy of

1This is a consequence of the Strong Equivalence Principle.
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neutrons is a consequence of the fact that the NS is "cold" with respect to the Fermi
temperature TF of neutrons. The latter defines a threshold below which quantum
effects become non-negligible. As a matter of fact, after ∼ 1 year from its birth, the
temperature of the NS decreases to T ≃ 109K, far below the Fermi temperature
which, at the typical densities of the NS (ρ ≈ 1014g/cm3), is around TF ≃ 1011K. In
this sense, we can consider the temperature of the star to be zero and, thus, rewrite
the first law of thermodynamic in Eq. (2.26) as:

dϵ = ϵ+ p

n
dn , (2.28)

which combined with the first relation found in Eq. (2.27) allows to rewrite the EoS
in a barotropic form.

Barotropic EoS and integration of the TOV equations. A barotropic EoS
is also very useful because it easily closes the TOV equation system and allows to
integrate it. To integrate the system in Eq. (2.20) we need two2 boundary conditions:
m(0) and ϵ(0). The first boundary condition can be fixed as m(0) = 0. Indeed, if we
take a tiny sphere surrounding the center of the star with radius r = x, circumference
2πx and proper radius ∫ x

0
eλdr ∼ eλx , (2.29)

the ratio between the circumference and the proper radius is 2πe−λ. Since by the
Strong Equivalence Principle the spacetime is locally flat, the ratio between the
circumference of the sphere and its radius must be 2π. This implies that eλ → 1 as
r → 0 and since

e2λ = 1
1 − 2m

r

, (2.30)

it ultimately implies that m(0) = 0. Therefore, for any assigned barotropic EoS,
we obtain a one-parameter family of solutions identified by the boundary condition
ϵ(0) = ϵc, i.e. the value of the energy density at the center of the star. Note
that integrating the TOV equations for a certain EoS and ϵc returns the mass and
radius of the respective equilibrium configuration of the NS. Thus, if we continue to
integrate the TOV for the same EoS changing the value of the central energy we
would eventually come out with one of the curves in the mass-radius diagram as in
Fig. 2.3.

Stiffness and softness. In Fig. 2.3 we can distinguish different types of curves,
some steeper which correspond to bigger radii, some softer which correspond to
smaller radii. Indeed, an EoS is usually categorized as either a stiff EoSs or a soft
EoSs. An EoS is considered stiff when a variation of the mass-energy density causes
a large increase in the internal pressure of the star, while soft otherwise. For instance,
a star with a stiff EoS resists more efficiently to its own self gravity than a soft EoS.
This implies that, given a certain mass, stiff EoSs predict a more expanded and
less compact equilibrium configuration than a soft one. Therefore, in Fig. 2.3 stiff
EoSs are placed on the right hand side, i.e. larger radii, and have higher maximum
masses, conversely, the ones less stretched on the left are soft EoSs. Note that these
EoSs, rather than in their analytic expression, are commonly provided in tabulated
form, i.e. an ordered list of {ϵ, p(ϵ)} computed using complex nuclear-physics models.

2The third boundary condition for p is obtained from the EoS, i.e. p(0) = p(ϵ(0)).
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We can conclude that the EoS affects the mass and radius of a neutron star, as
well as any other stellar macroscopic feature, as its moment of inertia, or its response
to external tidal "solicitations". As we will discuss in the following, the latter is
encoded in the so called Love Numbers, and the related tidal deformability. Masses
and deformabilities represent key parameters encoding information on the EoS and,
crucially, affect the GW emission of coalescing neutron star binaries. Therefore, from
the study of these emissions one can ultimately recover through these parameters
the properties of the NS EoS. For this reason they will be the focus of the next
Chapters and of the analyses conducted in Chapter 5.

Figure 2.3. Mass-radius diagram of non-spinning neutron stars for several EoSs.Note that
the dotted curves starting in the bottom-left part of the diagram correspond to quark
stars, while ordinary neutron star are displayed as the dashed curves on the bottom-right
part of the diagram (Ferrari et al., 2020).

2.3.2 Non-relativistic many body nuclear model
As we have already mentioned, the EoS of a NS and its observable properties

ultimately depend on the model we choose to describe nuclear interactions. Therefore,
to continue with our analyses of NSs and their emission we first need to fix the
baseline model which will consider throughout the next Chapters.

In particular, we will describe nucleons dynamics through the non-relativistic
Hamiltonian (Tonetto et al., 2021):

H =
∑

i

p2
i

2m +
∑
i<j

vij +
∑

i<j<k

Vijk , (2.31)

where m, p⃗ are, respectively, the nucleon mass and momentum. The framework
defined above falls within the so-called Nuclear Many-Body Theory (NMBT) ap-
proaches, in which nuclear systems are described in terms of point-like nucleons
interacting through two- and three-body forces, thus the nucleon-nucleon (NN) po-
tential vij and the nucleon-nucleon-nucleon (NNN) potential Vijk in Eq. (2.31). The
NNN potential contribution becomes particularly significant in the regions of highest
density in the NS. This term is commonly described as the sum of two potentials
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(see Eq. (2.32)): the attractive Fujita-Miyiazawa potential (V 2π
ijk), describing the

two-pion exchange process in which a NN interaction leads to the excitation of a ∆
resonance (Fig. 2.4), and a purely phenomenological repulsive potential (V R

ijk),

Vijk = V 2π
ijk + V R

ijk . (2.32)

Figure 2.4. Diagrammatic representation of the NNN interaction described by the Fujita-
Miyiazawa potential. Dashed lines represent the pion-exchange, while the solid lines and
the double line represent nucleons and the ∆ resonance, respectively (Tonetto et al.,
2021).

The amplitude of V R
ijk is strongly related to the stiffness of the EoS but it is

almost unconstrained above nuclear saturation density. Thus, to investigate different
scenarios we will modify the Hamiltonian in Eq. (2.31) introducing a free-parameter
which defines the strength of 3-nucleon repulsive interactions called α (Sabatucci
et al., 2022). This is done through the transformation:

V R
ijk → αV R

ijk . (2.33)

In the top panel of Fig. 2.5 we show the mass-radius relation for different values of α
in the range 0.7 ≤ α ≤ 2 (Sabatucci et al., 2022). As we can observe, larger values of
α, i.e. stronger repulsive three-nucleon forces, yield stiffer EoSs. The bottom panel
of Figure 2.5 also displays the normalized3 tidal deformability λ/M5 as a function of
the NS mass M , for different values of α . As discussed before, the NS deformability,
which we will properly introduce in Section 2.4, determines the resistance of the
NS to an external tidal field. For a fixed mass, the larger α , the stiffer the EoS,
and the more diluted in space the equilibrium configuration predicted by the TOV
equations, i.e. the bigger the dimensionless tidal deformability.

3Note that in geometric units such quantity is dimensionless.
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Figure 2.5. Top panel: mass-radius profiles for different values of the parameter α. Bottom
panel: profile of the dimensionless tidal deformability in terms of the NS mass. Each
gray line corresponds to a value of α ∈ [0.7, 2] while the dashed purple line corresponds
to α =1 (Sabatucci et al., 2022).

2.4 Love numbers
In this Section we will derive the expression of the NS Love Numbers both in a

Newtonian framework and in a Relativistic framework. These quantities represent
the key parameters to access the information on the EoS carried by the gravitational
wave and electromagnetic emission of coalescing neutron stars binaries which will be
introduced in Chapter 3 and will represent our main focus for the rest of the work.

2.4.1 Love Numbers in a Newtonian framework
We will follow the pertubative approach devoloped in Poisson & Will (2014),

firstly defining the equations of a self-gravitating spherical fluid and then perturbing
these equations with the introduction of an external potential (tidal field).
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Fluid equations. Let us consider a body A which we will assume to be made of
a perfect fluid and to belong to a system of N interacting bodies4. A perfect fluid’s
essential properties (its density ρ(x⃗, t), pressure p(x⃗, t) and velocity field v⃗(x⃗, t)) are
governed by the continuity equation:

∂ρ

∂t
+ ∇ρ · v = 0 , (2.34)

and the Euler equation:
ρ

dv⃗
dt = ρ∇U − ∇p , (2.35)

where U(t, x⃗) is the gravitational potential (per mass unit) produced by all the
bodies in the system which satisfies the Poisson equation:

∇2U = −4πGρ . (2.36)

The general solution to the Poisson equation has the expression:

U(t, x⃗) = G

∫
d3x′ ρ(t, x⃗′)

|x⃗ − x⃗′|
. (2.37)

We will express this potential as the sum of two contributions: the internal potential
produced by body A (UA) and the external potential produced by the remaining
bodies (U−A). Inserting U = UA +U−A and putting ourselves in the reference frame
of A’s center of mass, Eq. (2.35) becomes:

ρ
d⃗̄v
dt = ρ∇UA − ∇p+ ρ∇(U−A − a⃗A · ⃗̄x) , (2.38)

where, r⃗A ≡ 0⃗ represents the position of A’s center of mass, ⃗̄x = x⃗ − r⃗A denotes the
position relative to A’s center of mass, ⃗̄v = d⃗̄x

dt is the relative velocity field and a⃗A is
the center of mass’ acceleration. For simplicity the gradient in this new coordinate
system will still be denoted with the symbol ∇. Note that the first two terms on
the right in Eq. (2.38) account for internal aspects of the body’s dynamics while
the last term on the left accounts for the influence of the external bodies. Moreover,
the term ∇(U−A − a⃗A · ⃗̄x) in Eq. (2.38) can be interpreted as the gradient of an
effective external potential Ueff defined as:

Ueff = U−A − a⃗A · ⃗̄x , (2.39)

where −∇(a⃗A ·⃗̄x) represents the fictitious force that arises because of the non-inertial
motion of the center of mass.

Since the internal potential satisfies Poisson equation, it can be expressed, as in
Eq. (2.37), as:

UA(t, ⃗̄x) = G

∫
A

d3x′ ρ(t, ⃗̄x)
|⃗̄x− x⃗′|

, (2.40)

4Further on we will restrict ourselves to a binary systems of compact objects (N=2).
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while we will define the external potential in terms of its Taylor expansion around
A’s center of mass:

U−A(t, ⃗̄x) =
∞∑

ℓ=0

1
ℓ! (∂j1∂j2 ...∂jℓ

U−A)x̄j1 x̄j2 ...x̄jℓ

=
∞∑

ℓ=0

1
ℓ! (∂j1,j2,...,jℓ

U−A)x̄j1,j2,...,jℓ

=
∞∑

ℓ=0

1
ℓ! (∂LU−A) x̄L

= U−A(t, 0⃗) + gj(t)x̄j −
∞∑

ℓ=2

1
ℓ!EL(t)x̄L .

(2.41)

In Eq. (2.41) we have used the condensed notation presented in Poisson & Will (2014).
The uppercase index L represents a collection of ℓ indices, i.e. x̄L = x̄j1,j2,j3,...,jℓ

and
∂L = ∂j1,j2,j3,...,jℓ

. Moreover, the notation x̄j1,j2,j3,...,jℓ
and ∂j1,j2,j3,...,jℓ

translates into
the products x̄j1 · x̄j2 · ... · x̄jℓ

and ∂j1 · ∂j2 · ... · ∂jℓ
. Note that the indices j1, j2, ..., jℓ

can only vary between 1 and 3 (they correspond to the three spatial directions). In
the last line of Eq. (2.41) we have broken down the expansion of U−A into three
terms:

• term ℓ = 0 : This corresponds to the constant term U−A(t, 0⃗) which is not of
much interest for our analysis since it vanishes in Eq. (2.35) and thus will be
ignored from this point on;

• term ℓ = 1 : This corresponds to gj(t)xj where we have introduced the quantity
gj(t) = ∂jU−A(0⃗, t);

• terms ℓ ≥ 2 : These are the terms appearing in the sum on the right, where
we have defined EL(t) = −∂LU−A(0⃗, t).

The tensors EL(t) are the so-called tidal multipoles. Note that, since U−A satisfies
the Laplace equation within the volume occupied by A (i.e. ∇2U−A = 0), EL are
not only symmetric but also trace-free, i.e. they are symmetric trace-free tensors or
STF tensors.

Our goal now is to exploit the final relation in Eq.(2.41) to re-express the potential
Ueff in Eq. (2.39) but we first need to find an expression for a⃗A. Exploiting the
definition of the center of mass’s acceleration a⃗A in an arbitrary reference frame we
can rewrite:

a⃗A(t) = 1
MA

∫
A
ρ(x⃗, t)dv⃗

dt d3x⃗

= 1
MA

∫
A
ρ(x⃗, t)∇UAd3x⃗ + 1

MA

∫
A
ρ(x⃗, t)∇U−Ad3x⃗

= 1
MA

∫
A
ρ(x⃗, t)∇U−A ,

(2.42)

where we substituted Eq. (2.35) and split U into the internal and external contribu-
tion. Note that the integral

∫
A ρ(x⃗, t)∇UAd3x⃗ = 0 because of the conservation of

the total momentum of body A. Next, inserting the final relation presented in Eq.
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(2.41), we obtain:

aj
A = 1

MA

∞∑
ℓ=0

1
ℓ!I

⟨L⟩
A (t) ∂jLU−A(0⃗, t)

= gj − 1
MA

∞∑
ℓ=2

1
ℓ!I

⟨L⟩
A (t) EjL(t) ,

(2.43)

where gj corresponds to the term ℓ = 0 in the sum, while the term for ℓ = 1 vanishes
because the integral M−1

A

∫
A ρx

j = rj
A is zero in the center of mass reference frame.

The tensors I⟨L⟩
A are the multipole moments of body A:

I
⟨L⟩
A (t) =

∫
A
ρ(x⃗, t)(x⃗ − r⃗A)⟨L⟩dx⃗3 . (2.44)

Note that the angular brackets are used to denote that I⟨L⟩
A are indeed STF tensors.

Substituting the last line of Eq. (2.41) and Eq. (2.43) into Eq. (2.39) we get:

Ueff = −
∞∑

ℓ=2

1
ℓ!

[
ELx̄

L − I
⟨L⟩
A (t)
MA

EjLx̄
j

]
. (2.45)

Finally, exploiting the fact that for almost spherical bodies the coupling terms
between the body multipoles, IL

A, and the tidal multipoles, EL, can be neglected, the
effective potential can be rewritten as:

Ueff = −
∞∑

ℓ=2

1
ℓ!ELx̄

L . (2.46)

This is the expression for the external potential we will be using in the following
paragraphs to obtain the Love Numbers’ classic formula. Note that the effect of
the external effective potential in Eq. (2.46) has a subdominant contribution on the
fluid dynamics, i.e. to Eq. (2.38), compared to the internal potential UA. This can
be checked, for instance, in the case of a binary system composed of body A and
its companion B. While the internal potential scales as UA ∼ GMA/r̄C , being r̄C a
characteristic length scale within the body, the external potential is dominated by
the term ℓ = 2 and scales as UB ∼ GMB r̄

2
C/r

3
AB, being rAB the typical inter-body

distance. From these relations we can obtain the typical scale of the ratio between
the two potentials’ intensities:

UB

UA
∼ MB

MA

(
r̄C

rAB

)3
. (2.47)

As we would intuitively expect, the perturbative influence of the external potential is
negligible when the two bodies are well separated (r̄C ≪ rAB) but becomes relevant
as the inter-body distance becomes comparable to body A’s typical length scale. In
the case of a binary coalescence, then, tidal effects are increasingly relevant as the
two bodies approach each other.

It is important to note that although EL and IL are in general time-dependent,
for our future calculations we limit ourselves to the case of two bodies sufficiently
distant that the tidal fields change slowly with respect to their orbital period. Under
this assumption of static tides the tensors EL and IL can be considered approximately
constant and the external tidal field is assumed to be too slow to take the stars out
of hydrostatic equilibrium. Let us now move on to the computation of the Love
Numbers following the perturbative approach of Poisson & Will (2014).
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Unperturbed configuration. We will first consider body A’s unperturbed con-
figuration to be spherically-symmetric, non-rotating5 and in hydrostatic equilibrium.
For a spherically symmetric body Poisson equation (Eq. (2.36)) can be rewritten as:

1
r2

d

dr

(
r2dU

dr

)
= −4πGρ(r) , (2.48)

which also leads to the relation:
dU

dr
= −Gm(r)

r2 , (2.49)

where m is the mass contained in a sphere of radius r and is related to the density
function ρ by the mass continuity equation:

dm

dr
= 4πρ(r)r2 . (2.50)

The equilibrium version of Euler equation for body A in the center of mass reference
frame can be derived from Eq. (2.38) by neglecting the external terms and fixing
v̄j = 0. This leads to the equation of hydrostatic equilibrium of the star:

dp

dr
= ρ(r)dU

dr
= −Gρ(r)m(r)

r2 , (2.51)

where here we have exploited Eq. (2.49) found above. Similarly to what we have
seen in 2.3.1, to complete the system composed of the mass continuity equation and
the hydrostatic equilibrium equation we must specify the EoS of the NS. For our
analysis we will assume the EoS to be polytropic which means that the pressure only
depends on the density as:

p = KρΓ , (2.52)
where K and Γ = 1 + 1/n are constants and n is the polytropic index. This EoS
well represents the behaviour of white dwarfs (i.e. stars sustained by the degenerate
pressure of electrons) but is less accurate to depict the behaviour of matter inside
neutron stars, although a generalization to this EoS is found for piecewise polytropes
model (Read et al., 2009).

Perturbed configuration. We are now going to consider the linear perturbations
to the fluid equations of body A caused by the influence of the external potential of
a body B (Eq. (2.46)). From this point on Ueff will be denoted as Utidal, the tidal
potential produced by body B.

Note that the perturbation of any generic fluid quantity Q can be described
either following a Eulerian approach or a Lagrangian approach. The former employs
a macroscopic point of view: Q is compared to its unperturbed value Q0 at the same
point in space and the perturbation is computed as

δQ := Q(t, x⃗) −Q0(t, x⃗) . (2.53)

While, the latter employs a microscopic point of view: Q is compared at the same
fluid element, displaced by the vector ξ⃗(t, x⃗) relative to its unperturbed position x⃗,
and the perturbation on Q is computed as

∆Q := Q(t, x⃗ + ξ⃗(t, x⃗)) −Q0(t, x⃗) ≃ δQ+ ξi∂iQ0 . (2.54)
5The hypothesis of non-rotation is just a simplifying assumption (see Poisson & Will (2014) for

the complete analysis of the body’s rotation).
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The commutation rules between these two kinds of perturbations and the operators
appearing in Euler equation (Eq. 2.35) are:

[δ, ∂t] = 0 ;
[δ, ∂i] = 0 ;

[∆, ∂t] = −(∂tξ
k)∂k ;

[∆, ∂i] = −(∂iξ
k)∂k ;[

∆, d
dt

]
= 0 .

(2.55)

Perturbed continuity equation. The mass of a portion of fluid remains the same
after that portion is perturbed. Assumed the portion of fluid changes its volume
from V to Ṽ = V + ∆V and its density from ρ to ρ + δρ after the perturbation,
this implies that the integrals

∫
V ρd

3x and
∫

Ṽ (ρ+ δρ)d3x must produce the same
number. The integral for the perturbed mass can be rewritten as:∫

Ṽ
ρ d3x+

∫
Ṽ
δρ d3x =

∫
V
ρ d3x+

∫
S
ρ ξ⃗ · dS⃗ +

∫
Ṽ
δρ d3x , (2.56)

where we have expressed
∫

Ṽ ρd
3x in terms of the mass flux exiting the surface S

which encloses completely V . The vector dS⃗ is the outward-directed surface element.
This surface integral can be expressed as a volume integral through the divergence
theorem, which leads the mass conservation statement to take the form:∫

V
∂i(ρξi)d3x+

∫
Ṽ
δρ d3x = 0 −→

∫
V

[
∂i(ρξi) + δρ

]
d3x = 0 , (2.57)

where on the right side of Eq. (2.57) we are taking into account only the linear
perturbative terms. Since Eq. (2.57) is valid for any volume V , then δρ must have
the expression:

δρ = −∂i(ρξi) . (2.58)
From Eq. (2.54) we can get the corresponding lagrangian perturbation:

∆ρ = −ρ∂iξ
i . (2.59)

Equations (2.58) and (2.59) correspond to the time-integrated forms of the perturbed
continuity equation.

Perturbed Euler equation. To compute the perturbed Euler equation let us
first rewrite Eq. (2.35) as:

dvi

dt
= ∂iΦ − 1

ρ
∂ip . (2.60)

Note that vi represents the perturbed velocity field and Φ represents the perturbed
total potential which is given by:

Φ = U + δΦ = U + δU + Utidal , (2.61)

where U is the unperturbed internal potential and δU is its Eulerian perturbation.
Exploiting the commutation relations in Eq. (2.55) we can compute the Langrangian
expression of the perturbed Euler equation:

d2ξi

dt2
= ∆ρ

ρ2 ∂ip− 1
ρ
∂i∆p+ ∂i∆Φ + (∂iξ

k)
(1
ρ
∂kp− ∂kΦ

)
. (2.62)
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Note that we also exploited the relation ∆vi = dξi/dt which directly comes from the
displacement vector definition. Since the unperturbed configuration is an equilibrium
configuration, the unperturbed velocity field vanishes and, as a consequence, the
term multiplying ∂iξ

k also vanishes (see Eq. (2.35)). Moreover, the total time
derivative d2ξi/dt2 is equivalent to the partial time derivative ∂2ξi/∂t2. Taking into
account these properties, Eq. (2.62) becomes:

∂2ξi

∂t2
= ∆ρ

ρ2 ∂ip− 1
ρ
∂i∆p+ ∂i∆Φ . (2.63)

Following the same procedure for the Eulerian variation of Euler equation we get:

∂2ξi

∂t2
= δρ

ρ2 ∂ip− 1
ρ
∂iδp+ ∂iδΦ . (2.64)

Pressure and potential perturbations. The perturbed Euler equation (either
Eq. (2.63) or Eq. (2.64)) can be solved once the expressions of ∆p (δp) and ∆U
(δU) are specified. Since the EoS is polytropic ∆p is directly related to ∆ρ as:

∆p
p

= Γ∆ρ
ρ

. (2.65)

Exploiting Eq. (2.54) and Eq. (2.59) we can also derive the Eulerian pressure
perturbation from the equation above:

δp = −Γ p∂iξ
i − ξi∂ip . (2.66)

Finally, in order to find an expression for the perturbation of A’s gravitational
potential, δU , we can exploit the fact that it still satisfies the Poisson equation (Eq.
(2.36)) and get:

∇2δU = −4πGδρ . (2.67)

Perturbed equilibrium. If the perturbed configuration of the initial equilibrium
configuration is also an hydrostatic equilibrium configuration, then ∂ξi/∂t = 0.
Exploiting this condition, Eq. (2.64) becomes:

δρ

ρ2 ∂ip− 1
ρ
∂iδp+ ∂iδΦ = 0 . (2.68)

To simplify the perturbed continuity equation we will fix ξ⃗ to describe the displace-
ment of a fluid element from a spherical surface ρ = constant (unperturbed state)
to to the deformed surface ρ = constant (perturbed state). By doing so, we are
assuming the vector field ξ⃗ to map surfaces of constant density in the unperturbed
configuration to surfaces of the same constant density in the perturbed configuration.
This choice implies that ∆ρ = 0 which in turns means that the displacement vector
is solenoidal, i.e. ∂iξ

i = 0 (see Eq. (2.59)). The new expression for the Eulerian
perturbed continuity equation reads:

δρ = −ξi∂iρ ; δp = −ξi∂ip . (2.69)

where on the right hand side we have also shown the expression for δp which can be
easily derived from Eq. (2.66) exploiting the divergence-free condition on ξ⃗. Since
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the unperturbed density ρ and pressure p only depend on the radial coordinate6 the
only relevant component of the displacement vector in Eq. (2.69) is ξr. We will not
solve then for the angular components which will be fixed by the divergence-free
condition.

Clairaut-Radau equations. To proceed further we shall introduce the decompo-
sition of the perturbation quantities in terms of spherical harmonics Yℓ,m(θ, ϕ) which
represent a powerful tool to analyze spherically symmetric differential equations.
Spherical harmonics are defined as the solutions to the eigenvalue equation:(

1
sin θ

∂

∂θ
sin θ ∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2

)
Yℓm = −ℓ(ℓ+ 1)Yℓm , (2.70)

where ℓ is an integer number defined between 0 and ∞ and m is an integer number
defined between −ℓ and ℓ. Note that the operator applied to Yℓm on the left side of
Eq. (2.70) is the angular part of the Laplacian operator in spherical coordinates.
Since spherical harmonics constitute a complete set of orthonormal functions, any
square-integrable function on the surface of a sphere, g(θ, ϕ), can be expressed in
this basis as:

g(θ, ϕ) =
∞∑

ℓ=0

ℓ∑
m=−ℓ

gℓmYℓm(θ, ϕ) , (2.71)

where the coefficients gℓm are given by:

gℓm =
∫
g(θ, ϕ)Y ∗

ℓm(θ, ϕ)dΩ . (2.72)

Thus, we can decompose the perturbation quantities in spherical harmonics as
displayed in Eq. (2.73).

ξr =
∑
ℓ,m

rfℓm(r)Yℓm(θ, ϕ)

δρ =
∑
ℓ,m

ρℓm(r)Yℓm(θ, ϕ)

δp =
∑
ℓ,m

pℓm(r)Yℓm(θ, ϕ)

δU =
∑
ℓ,m

Uℓm(r)Yℓm(θ, ϕ)

Utidal =
∑
ℓ,m

Vℓm(r)Yℓm(θ, ϕ)

. (2.73)

Note that the coefficients fℓm are dimensionless because a factor r was put in the
decomposition of ξr. The perturbation source coincides with the tidal potential Utidal

which was defined in Eq. (2.46). Since only ℓ ≥ 2 terms appear in its definition,
the sums appearing in Eq. (2.73) all begin at ℓ = 2, with m running from −ℓ to ℓ.
Substituting the decompositions for ξr, δρ and δp in Eq. (2.69) we obtain

ρℓm = −rρ′fℓm , (2.74)
6This is a consequence of the spherical symmetry of the unperturbed configuration.
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and
pℓm = −rp′fℓm = ρGm

r
fℓm , (2.75)

where the apex ′ stands for the total derivative d/dr. Note that in Eq. (2.75) we
have substituted p′ with Eq. (2.51). To find the expression for Uℓm we need to
substitute the decomposition of δU (Eqns. (2.73)) and Eq. (2.74) into the Poisson
equation7 (Eq. (2.67)) and exploit the fact that the spherical harmonics satisfy the
eigenvalue relation in Eq. (2.70). By doing so we obtain that, inside the body, the
coefficients Uℓm must satisfy the differential equation:

r2U ′′
ℓm + 2rU ′

ℓm − ℓ(ℓ+ 1)Uℓm = −4πGr2ρℓm , (2.76)

while outside of the body the coefficients have the expression:

Uout
ℓm (r) = 4πG

2ℓ+ 1
Iℓm

rℓ+1 . (2.77)

The coefficients Iℓm are related to the perturbed body’s multipole moments I⟨L⟩
A

introduced in Eq. (2.44) and are computed as:

Iℓm(t) =
∫

(ρ+ δρ)rℓY ∗
ℓm(θ, ϕ)d3x , (2.78)

where the integral is evaluated over the volume containing the body. On the other
hand, the coefficients Vℓm must satisfy the differential equation:

r2V ′′
ℓm + 2rV ′

ℓm − ℓ(ℓ+ 1)Vℓm = 0 . (2.79)

Equation (2.79) is obtained in the same fashion as Eq. (2.76) from the Laplace
equation ∇2V = 0 which the tidal potential satisfies inside and outside body A. The
only admissible solution for Eq. (2.79) is:

Vℓm = 4π
2ℓ+ 1dℓmr

ℓ , (2.80)

where dℓm are called the moments of the driving potential and can be computed
once the expression for Utidal is specified.

Now we want to substitute the decompositions of the perturbation quantities
and the expressions found for the coefficients appearing in the decompositions into
Eq. (2.68). What we get is:

p′
ℓm = −Gm

r2 ρℓm + ρ(Uℓm + Vℓm) . (2.81)

From Eq. (2.51) we can derive an expression for pℓm:

pℓm = ρ(Uℓm + Vℓm) , (2.82)

which we can differentiate with respect to r and substitute into Eq. (2.81) obtaining
the expression:

Gm

r2 ρℓm = −ρ′(Uℓm + Vℓm) . (2.83)

7Note that here we are thinking of expressing the Laplacian operator in spherical coordinates,
i.e. ∇2 = r−2∂r(r2∂r) + r−2[(sin θ)−1∂θ sin θ∂θ + (sin θ)−2∂ϕϕ].
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Finally, substituting Eq. (2.74) and (2.75) into Eq. (2.83) we get:

Gm

r
fℓm = Uℓm + Vℓm (2.84)

which summarizes the content of Euler’s equation for a perturbed equilibrium.
As we have proved, the coefficients fℓm represent the real key quantities to

compute the other perturbation coefficients ρℓm (Eq. (2.74)), pℓm (Eq. (2.75))
and Uℓm (Eq. (2.84)). Thus, we also expect these coefficients to determine the
characteristics of the body’s deformation induced by Utidal. Our main goal, now,
will be to compute these coefficients.

Computing the tidal Love Numbers. Let us insert the expression for Uℓm

which can be obtained from Eq. (2.84) into Eq. (2.76), taking into account Eq.
(2.79) (all of the terms concerning Vℓm represent a null contribution to the differential
equation) and Eq. (2.50). The resulting differential equation, called the Clairaut’s
equation, will be:

r2f ′′
ℓm + 6D(rf ′

ℓm + fℓm) − ℓ(ℓ+ 1)fℓm = 0 , (2.85)

where:
D = 4πρ(r)r3

3m(r) = ρ(r)
ρ̄(r) , (2.86)

is a function encoding relevant information on the body’s unperturbed configuration.
More specifically, D is the ratio between the mass density at distance r from the
body’s center of mass, ρ(r), and the mean mass density of the sphere contained
within r, ρ̄(r) = m(r)/(4π/3 · r3).

We will see briefly that Clairaut’s equation can be re-expressed in a more
convenient way in order to derive the expression of the fℓm and the Love Numbers.
Let us see how the deformed body’s multipole moments Iℓm can be linked to the
driving potential moments dℓm through the coefficients fℓm. First, we will evaluate
Eq. (2.84) on the body’s surface (r = R) and then substitute the expressions for
Uℓm and Vℓm outside the body which were presented in Eq. (2.77) and (2.80). This
leads to the equation

GM

R
fℓm(R) = 4π

2ℓ+ 1

[
GIℓm

Rℓ+1 + dℓmR
ℓ
]
. (2.87)

Repeating this procedure for the first derivative of Eq. (2.84) we obtain that

GM

R

[
Rf ′

ℓm(R) − fℓm(R)
]

= 4π
2ℓ+ 1

[
−(ℓ+ 1)GIℓm

Rℓ+1 + dℓmℓR
ℓ
]
. (2.88)

Finally solving these equations for dℓm and Iℓm we obtain:

dℓm = GM

4πRℓ+1
[
Rf ′

ℓm(R) + ℓfℓm(R)
]
, (2.89)

and
GIℓm = −GM

4π Rℓ [Rf ′
ℓm(R) − (ℓ+ 1)fℓm(R)

]
. (2.90)

Now, we want to recast these relations and Eq. (2.85) in a simpler form introducing
the function:

ηℓ = rf ′
ℓm

fℓm
, (2.91)
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which is known as Radau’s function. Note that ηℓ does not depend on m. This
results from the fact that the differential equation in Eq. (2.85), although being
parametrized in m, does not explicitly depend on it. This means that fℓm must
depend on m through a multiplicative factor which disappears in the ratio f ′

ℓm/fℓm

in Eq. (2.91). Substituting Eq. (2.91) into Eq. (2.85) we get the so-called Radau’s
equation:

rη′
ℓ + ηℓ(ηℓ − 1) + 6D(ηℓ + 1) − ℓ(ℓ+ 1) = 0 . (2.92)

This differential equation can be solved numerically integrating it outward from r = 0
with the initial condition ηℓ(r = 0) = ℓ − 2. The latter results from substituting
the limit8 D → 1 into Eq. (2.92) for r = 0. The solution for ηℓ can be exploited
to compute dℓm and Iℓm using Eq. (2.90) and (2.89). Moreover, after having
re-expressed these two equations in terms of ηℓ, we can get a very useful relation:

GIℓm = 2kℓR
2ℓ+1dℓm , (2.93)

where kℓ are the gravitational Love numbers which are defined as

kℓ := ℓ+ 1 − ηℓ(R)
2 [ℓ+ ηℓ(R)] . (2.94)

In the end, we have found that the gravitational "polarization" of the body, repre-
sented by Iℓm, is proportional to the external potential, represented by dℓm, through
the Love Numbers kℓ which encode the response of the body to the gravitational
perturbation of its initial equilibrium configuration.

Perturbed potential of a binary system. Finally, we want to obtain the full
expression for the total gravitational potential in the binary system composed by
body A and body B. Note that we are still putting ourselves in the reference frame
of A’s center of mass.

Let us start by recalling that Utidal can be expressed as in Eq. (2.46) in terms of
the tensors EL. Since the EL are STF tensors, we can rewrite:

E⟨L⟩x
L = Ej1,j2,...,jℓ

xj1 · xj2 ... · xjℓ =
ℓ∑

m=−ℓ

Eℓmr
ℓYℓm(θ, ϕ) , (2.95)

or, equivalently:

Ej1,j2,...,jℓ
nj1 · nj2 ... · njℓ =

ℓ∑
m=−ℓ

EℓmYℓm(θ, ϕ) , (2.96)

where, n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) is the unitary positional vector. A proof of
Eq. (2.96) is given in Box 1.6 of Poisson & Will (2014) where the authors prove that
the generic scalar field A⟨L⟩n

L, where A⟨L⟩ is a STF tensor, is solution to the same
eigenvalue equation which defines the spherical harmonics Yℓm (Eq. (2.70)). Since
then E⟨L⟩n

L satisfies Eq. (2.70) and the spherical harmonics form a complete basis,
we can rewrite the former as in Eq. (2.96).

Substituting Eq. (2.95) into Eq. (2.46) we get

Utidal = −
∞∑

ℓ=2

ℓ∑
m=−ℓ

1
ℓ!Eℓmr

ℓYℓm(θ, ϕ) . (2.97)

8This comes from the fact that ρ → ρ̄ for r → 0.
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Comparing the equation above with the decomposition for Utidal in Eq. (2.73), we
find that Vℓm = Eℓmr

ℓ/ℓ!. Next, we exploit the expression for the coefficients Vℓm in
Eq. (2.80) to obtain a relation between Eℓm and dℓm:

dℓm = −2ℓ+ 1
4πℓ! Eℓm . (2.98)

Lastly, inserting Eq. (2.98) into Eq. (2.93) we find that

GIℓm = −2ℓ+ 1
2πℓ! kℓR

2ℓ+1Eℓm , (2.99)

which will come in handy further on. Moving on to the gravitational potential
produced by body A, we know that the potential after the tidal perturbation is
given by U + δU . Outside of body A the unperturbed potential U is just

U = GM

r
, (2.100)

while the expression for δU can be obtained by inserting Eq. (2.77) into the
decomposition in spherical harmonics in Eq. (2.73):

δU =
∞∑

ℓ=2

ℓ∑
m=−ℓ

4πG
2ℓ+ 1

Iℓm

rℓ+1Yℓm(θ, ϕ) . (2.101)

To find the expression for the total perturbed potential Φ acting outside of body
A we shall sum the U (Eq. 2.100), δU (Eq. (2.101)) and Utidal (Eq. (2.97)) and
exploit Eq. (2.99):

Φ = GM

r
−

∞∑
ℓ=2

1
ℓ!
[
1 + 2kℓ (R/r)2ℓ+1

]
·

ℓ∑
m=−ℓ

Eℓmr
ℓYℓm(θ, ϕ) , (2.102)

which can be expressed in a tensorial form by substituting the sum over m with Eq.
(2.95):

Φ = GM

r
−

∞∑
ℓ=2

1
ℓ!
[
1 + 2kℓ (R/r)2ℓ+1

]
ELx

L . (2.103)

If we consider only the dominant term in the sum (ℓ = 2 term), finally, we get that

Φ = GM

r
− 1

2
[
1 + 2k2 (R/r)5

]
Eijxixj , (2.104)

which is the perturbed potential of the binary system of the two stars A and B.

2.4.2 Love Numbers in a Relativistic framework
We will now generalize the Newtonian theory of a tidally deformed binary system

to the Relativistic case. The approach used in this Section will be similar to the
one of the previous Section as we shall be using a perturbative approach to quantify
the effect of the external tidal field. However, in a Relativistic framework, the
fundamental quantity which will be affected by the perturbation is the metric. We
are, therefore, switching to a geometrical point of view. Note that from this point
on we will assume G = c = 1.
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Equilibrium configuration. The unperturbed equilibrium configuration is repre-
sented by a static and spherically symmetric star which is made of a perfect fluid.
As mentioned in 2.2.2, in this configuration the geometry of the space time can be
described by the line element

ds2 = g
(0)
αβdx

αdxβ = −eν(r)dt2 + eλ(r)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (2.105)

and the stress-energy tensor Tαβ is defined as

Tαβ = (p+ ϵ)uαuβ + pg
(0)
αβ , (2.106)

where uα is the four-velocity field of the fluid, p is the pressure and ϵ is the mass-
energy density. The equilibrium configuration is described by the TOV equations
(Eq. (2.20)) to which we add a barotropic EoS, i.e. ϵ ≡ ϵ(p).

Perturbed configuration in the weak field limit. Similarly to what we have
seen for the Newtonian case, the main quantities describing the perturbation will
be the tidal moment STF tensor Eij and the the quadrupole moment STF tensor,
which will now be denoted with Qij which are defined, respectively, as

Eij = ∂2Utidal

∂xi∂xj
, (2.107)

and
Qij =

∫
d3xρ

(
xixj − 1

3r
2δij

)
. (2.108)

In the weak field limit9 this two quantities are proportional to one another, i.e.

Qij = −λEij . (2.109)

The proportionality constant λ is called tidal deformability and can be derived by
dimensional analysis10 as:

λ = 2
3k2R

5 , (2.110)

where 2/3 is a conventional constant factor, k2 is the ℓ = 2, quadrupolar, dimension-
less Love Number and R is the star radius. Exploiting Eq. (2.110) we can rewrite
the perturbed Newtonian potential in Eq. (2.104) as:

Φ = M

r
+ 3

2
Qij

r3

(
ninj − 1

3δij

)
− 1

2Eijxixj , (2.111)

where we have also exploited the relations ni = xi/r and Qijxixj = Qijr
2(ninj −

1/3 δij). The latter holds because Qij is trace-less. It can be proven (Ferrari et al.,
2020) that in the weak field limit

Φ = −(1 + g00)
2 , (2.112)

9Assuming the weak field approximation means that the perturbation to the metric is small
compared to the unperturbed metric, i.e. gµν = g

(0)
µν + hµν and the perturbation |hµν | ≪ |g(0)

µν |. This
assumption is valid when the two bodies in the binary are sufficiently far away from each other.

10Note that this constant is of the same kind as the one relating Iℓm and Eℓm in Eq. (2.99).
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which can be used to rewrite Eq. (2.111) as

− (1 + g00)
2 = M

r
+ 3

2
Qij

r3

(
ninj − 1

3δij

)
+ O

( 1
r3

)
− 1

2Eijxixj + O
(
r3
)
, (2.113)

where we have now specified the order of the next leading terms in the expression of
the perturbed potential. The latter can be easily found following the same steps
through which we obtained Eq. (2.111). Note that Eq. (2.113) is valid in the star’s
local asymptotic rest frame (asymptotically mass-centered Cartesian coordinates) at
large r.

Following the approach presented in Thorne & Campolattaro (1967) and Hinderer
(2008), our goal now will be to obtain the relativistic expression of k2 by matching
Eq. (2.113) with some asymptotic limit we will derive for the expression of the
metric perturbation. First of all, we define the perturbed metric

gαβ = g
(0)
αβ + hαβ , (2.114)

where g(0)
αβ is the background metric for the outer region of a static and spherically-

symmetric star defined in Eq. (2.105)), while hαβ is the linearized metric perturba-
tion. Note that hαβ is a symmetric rank-4 tensor thus it has only 10 independent
components which are functions of the coordinates (t, r, θ, ϕ). Along with these ten
functions we will be interested in studying also the components of the displacement
3-vector ξj(t, r, θ, ϕ) which describes the small-amplitude motion of the fluid elements
in the star.

Decomposition in scalar, vector and tensor spherical harmonics. As we
have seen in 2.4.1, the angular dependence of a perturbation acting on a spherically-
symmetric body can be decomposed in terms of special functions called spherical
harmonics. Here we want to apply the same strategy for the tensor hαβ but with a
few clarifications. Firstly, the eigenvalue equation in Eq. (2.70) in General Relativity
becomes (Regge & Wheeler, 1957):

γAB∇A∇BYℓm = −ℓ(ℓ+ 1)Yℓm (2.115)

Where γAB is the metric on the 2-sphere (A,B = 1, 2 and x1 = θ, x2 = ϕ) defined as

γAB =
(

1 0
0 sin2 θ

)
, (2.116)

and ∇A is the covariant derivative with respect to the metric. Moreover, in 2.4.1
we have only worked with scalar functions of θ and ϕ. When working with hαβ

the situation becomes more complicated: as mentioned in Regge & Wheeler (1957)
under a rotation of the reference frame around its origin the 10 components of hαβ

transform like 3 scalars (h00, h01 and h11), 2 vectors (h02,h03 and h12,h13) and one
2-rank tensor when considered as covariant quantities on the 2-sphere.

As we have seen before, scalar angular functions can be decomposed in terms
of spherical harmonics Yℓm(θ, ϕ) which are said to have a polar/even parity. The
parity operator P corresponds to the angular transformation (θ, ϕ) → (π − θ, π + ϕ)
and if applied to a scalar spherical harmonic Yℓm it gives (−1)ℓYℓm. Thus what we
intend when saying that a mathematical object has polar parity means is that under
the parity operation P it gains a multiplying factor (−1)ℓ.
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Similarly to scalars, vectors and tensors can be decomposed in, respectively, vector
spherical harmonics and tensor spherical harmonics. Vector and tensor harmonics
are constructed from scalar harmonics with the purpose of obtaining a covariant
object. In the case of vector harmonics, the easiest way to do so is by applying the
∇A to the Yℓm functions:

Ψℓm
A = const · ∇AY

ℓm = const · ∂

∂xA
Y ℓm . (2.117)

These vector harmonics also have a polar parity and thus we can call them polar
vector harmonics. However, one can also construct an indipendent class of vector
harmonics as following

Φℓm
A = const · ϵBA∇BY

ℓm = const · ϵBA
∂

∂xB
Y ℓm , (2.118)

where ϵAB is the Levi-Civita tensor defined on the 2-sphere

ϵAB =
(

0 sin θ
− sin θ 0

)
. (2.119)

Under a parity transformation the vector harmonics Φℓm
A transform as P(Φℓm

A ) =
(−1)ℓ+1Φℓm

A and are therefore said to have an axial/odd parity. Thus, we will call
these objects axial vector harmonics. For rank-2 tensors we can follow a similar
procedure, for instance applying the covariant derivative two times or also multiplying
the metric γAB to Yℓm. Either way, in this case we will get three classes of tensor
harmonics: two having polar parity and one with axial parity (Regge & Wheeler,
1957). We can then imagine to describe the perturbation tensor hαβ as the sum of a
polar- and axial-parity contribution. Note that we will apply this same decomposition
to the angular part of the displacement 3-vector ξj .

Gauge choice and simplifying assumptions. For small amplitude motion
there is no coupling between the various spherical harmonics and we can study
the individual harmonic’s contribution to the perturbation separately. Moreover,
we can considerably simplify the expression of the thirteen equations governing
the components of ξj and hαβ by fixing our gauge choice to the Regge-Wheeler
gauge. Thorne & Campolattaro (1967) also prove that odd-parity perturbations do
not produce any gravitational wave emission. This fact should not be surprising:
a pulsation (and the consequent gravitational wave emission) is produced only if
the perturbation causes a change in the star’s internal pressure, p, or mass-energy
density, ϵ. However, ϵ and p are scalar quantities and so they possess an even parity.
For this reason, odd-parity perturbations cannot trigger a star pulsation. In the
following, we will only study the even-parity terms in the expression of hαβ.

Additionally, we will focus our attention on the case of ℓ = 2 and m = 0 pertur-
bation (axially-symmetric perturbation).

With these specializations, the tensor hαβ can be rewritten as (Hinderer, 2008)

hαβ =


−eν(r)H0(r) 0 0 0

0 eλ(r)H2(r) 0 0
0 0 r2K(r) 0
0 0 0 r2 sin2 θK(r)

P2(cos θ) , (2.120)
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while the components of ξi become

ξr = r−2e−λ/2W (r)P2(cos θ) ; ξθ = −V (r)r−2∂θP2(cos θ) ; ξϕ = 0 . (2.121)

Note that the Pℓ(cos θ) are the Legendre polynomials11, the functions H0(r), H2(r)
and K(r) are the metric perturbation functions, and W (r), V (r) are the fluid
displacement functions.

Our goal is now to solve the perturbed Einstein equation:

δGα
β = 8πδTα

β , (2.122)

which links the variation of the pressure and energy-matter distribution (δTα
β ) to

the variation of the metric (δGα
β). The expression of the first-order perturbation of

the stress-energy tensor is (Hinderer, 2008):

δTα
β = diag(−δϵ, δp, δp, δp) . (2.123)

Note that since the EoS is of the form p ≡ p(ϵ) the variation δϵ can be rewritten as

δϵ =
(
dp

dϵ

)−1
δp . (2.124)

The expression for the first-order perturbation of the Einstein tensor Gαβ can
be computed from the perturbed metric in Eq.(2.114) knowing that hαβ has the
expression in Eq. (2.120).

Exploiting Eq. (2.122) and Eq. (2.123) we find that δGθ
θ − δGϕ

ϕ = 8πδ(δT θ
θ −

δT ϕ
ϕ ) = 0. Furthermore, inserting the expression for δGθ

θ and δGϕ
ϕ into this relation

we find that −H2 = H0 ≡ H. From δGr
θ = 8πδT r

θ = 0 we find a relation between
K ′ and H, namely K ′(r) = H ′(r) + ν(r)H(r). Next, we remove all the terms
depending on δp in the equations exploiting the relation δGθ

θ + δGϕ
ϕ = 16πδp and

by substructing the rr-component of the Einstein equation to the tt-component we
obtain the following differential equation for H:

H ′′ +H ′
[2
r

+ eλ
(2m(r)

r2 + 4πr(p− ϵ)
)]

+H

[
−6eλ

r2 + 4πeλ
(

5ϵ+ 9p+ ϵ+ p

dp/dϵ

)
− ν ′2

]
= 0 , (2.125)

where the prime denotes d/dr. To find the expression of H we first to set the
boundary conditions to Eq. (2.125). These can be found by requiring H to be
regular at r = 0 where Eq. (2.125) takes the form12

H ′′+H ′
[2
r

+ 4πr(p0 − ϵ0)
]

+H
[
− 6
r2 + 4π

(
5ϵ0 + 9p0 +

ϵ0 + p0
(dp/dϵ)0

)]
= 0 . (2.126)

11These polynomials correspond to the the subset of the spherical harmonics that is left invariant
by rotations about the polar axis (m = 0).

12For r → 0, infact, m(r) → 4πϵr3 (Ferrari et al., 2020). Since eλ = (1 − 2m/r)−1 and
eν = (1 − 2m/r), this means that eλ → (1 − 8πr2)−1 and eν → (1 − 8πr2). From the latter we
obtain ν′ = (log eν)′ = e−ν(eν)′ → −(1 − 8πr2)r. Thus we substitute in Eq. (2.126) m ∼ 0, eλ ∼ 1
and ν′ ∼ 0.
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Since we assume H to be regular near the center we can rewrite it in terms of its
Taylor expansion as H = a + br + cr2 + dr3 + er4 + O

(
r5) and substite it to Eq.

(2.126):

− 6
r2a− 4

r
b+ (4πα0b+ 6d)r + (14e+ 4πα0c)r2 + O

(
r3
)

= 0 , (2.127)

where α0 is a constant factor defined as

α0 = 5ϵ0 + 9p0 + ϵ0 + p0
(dp/dϵ)0

. (2.128)

Solving individually for the different powers of r we obtain:

O
(
r−2) : a = 0

O
(
r−1) : b = 0

O(1) : ∅
O(r) : 4πα0b+ 6d = 0 → d = 0
O
(
r2) 14e+ 4πα0c = 0 → e = −2π/7α0c

. (2.129)

Finally, we can substitute the coefficients into the polynomial and re-express H as

H(r) = a0r
2
[
1 − 2π

7

(
5ϵ0 + 9p0 + ϵ0 + p0

(dp/dϵ)0

)
r2
]

+ O
(
r5
)
, (2.130)

where we denoted with a0 the free coefficient c which defines a family of solutions for
H. To single out one solution, i.e. fix the value of a0, we can exploit the continuity
of H(r) and its derivative across r = R. Outside the star p = ϵ = 0 and Eq. (2.125)
becomes:

H ′′ +
[2
r

− λ′
]
H ′ −

[
6eλ

r2 + λ′2
]
H = 0 . (2.131)

Note that outside the star eλ = e−ν = (1 − 2M/r)−1 and λ′ = ν ′ = 2M/r2eλ. The
quantity M = m(R) = 4π

∫ R
0 ϵ(r)r2dr is the total mass-energy of the star.

Changing variable to x = (r/M − 1) (Thorne & Campolattaro, 1967) Eq. (2.131)
takes the form of the associated Legendre equation with ℓ = m = 2:

(x2 − 1)H ′′ + 2xH ′ −
(

6 + 4
x2 − 1

)
H = 0 . (2.132)

The complete solutions to this differential equation is given by a linear combination
of the associate Legendre functions of the first and second kind, respectively Pm

ℓ
and Qm

ℓ :
H = c1Q2

2(x) + c2P
2
2 (x) . (2.133)

In the limit r ≫ M Eq. (2.133) becomes (Hinderer, 2008):

H(r ≫ M) = 8
5c1

(
r

M

)
+ O

((
M

r

)4
)

+ 3
(
r

M

)2
+ O

(
r

M

)
, (2.134)

where the coefficients c1, c2 can now be found by matching Eq. (2.113) with the
expression of g00 we can find by exploiting the expression just found for H far outside
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the star. In particular, substituting the expression of h00 (Eq. (2.120)) into Eq.
(2.114) we find that

g00 = g
(0)
00 + h00 = −eν [−1 +H(r ≫ M)P2(cos θ)] , (2.135)

which we can re-express as:

− (1 + g00)
2 = M

r
+
(1

2 − M

r

)
H(r ≫ M)P2(cos θ) (2.136)

Next, we substitute Eq. (2.113) and Eq. 2.134 into Eq. (2.136) and obtain

3
2
Qij

r3

(
ninj − 1

3δij

)
−1

2Eijxixj =
[

8
10

(
M

r

)3
c1 + 3

2

(
r

M

)2
c2

]
P2(cos θ) . (2.137)

Similarly to what was done in Eq. (2.95) we now want to express the factors
depending on Qij and Eij in Eq. (2.137) in terms of spherical harmonics. In
particular we can say that Qijn

inj =
∑

mQℓmYℓm and Eijxixj =
∑

m EℓmYℓmr
ℓ,

while Qijδij = 0 because Qij is traceless. Moreover, since we are considering only
the perturbation with ℓ = 2,m = 0 the only terms to consider in the harmonic
expansions of Qij and Eij are Q20 and E20 which we will call in the following Q and
E for simplicity.

Solving, then, Eq. (2.137) we obtain the equation system
3
2QY20 = 8

10M
3P2(cos θ)c1

−1
2EY20 = 3

2P2(cos θ)c2

. (2.138)

Finally, we find the expression for the coefficients c1 and c2 noting that P2(cos θ) =
Y20: 

c1 = 15
8

Q

M3 = 15
8 λ

E
M3

c2 = −1
3M

2E
, (2.139)

where we have exploited the fact that Q and E also satisfy Eq. (2.109). Note that
now λ denotes the star deformability defined in (2.110).

We can now solve for λ using the expression of H(r) and its derivative H ′(r)
on the star surface (r = R) which can be found from Eq. (2.131) and Eq.(2.139).
Finally, using Eq. (2.110) we obtain the relativistic expression of the tidal Love
Number k2:

k2 = 8C5

5 (1 − 2C)2[2 + 2C(y − 1) − y]
{

2C[6 − 3y + 3C(5y − 8)]

+ 4C3[13 − 11y + C(3y − 2) + 2C2(1 + y)]

+ 3(1 − 2C)2[2 − y + 2C(y − 1)] log(1 − 2C)
}−1

, (2.140)

where C = M/R is called the compactness of the star while y is defined as:

y = RH ′(R)
H(R) , (2.141)
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and can be computed by integrating Eq. 2.125 in the region 0 < r < R.
From the Love Number we can define a convenient quantity called dimensionless

tidal deformability

Λ = λ

M5 = 2
3k2

(
M

R

)−5
= 2

3k2C−5 . (2.142)

Note that, in the following, we will use the terms "tidal deformability" and "dimen-
sionless tidal deformability" interchangeably. This is the parameter which we are
going to be interested in studying in the next Chapters and through which we can
access the information on the properties of the NS EoS from GW observations.
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Chapter 3

Neutron star mergers

The collision of two NSs stars belongs to the most violent events in the Universe
and produces a wide variety of observables, from GW and neutrino signatures up
to electromagnetic signals. The coexistence of these different information channels
makes binary neutron star mergers the perfect tool to study the behaviour of matter
at supranuclear densities.

In this Chapter we will first describe the evolutionary phases of a NS-NS merger
(Section 3.1), secondly we will comment on the properties of its GW emission (Section
3.2) and finally we will review the theoretical models used to describe one of the
electromagnetic counterparts of NS-NS merger known as kilonova (Section 3.3).

3.1 System evolution
3.1.1 Formation, inspiral and merger

The formation of compact binary systems is a broad and debated topic in As-
trophysics. Indeed, many different evolutionary paths can lead to the formation
of such systems. In general NS-NS binaries can be divided into two categories
depending on their formation channel: primordial binaries or dynamical binaries
(Mapelli, 2017). The former are the result of the evolution of a pre-existent massive
binary (M1,M2 ≳ 8-10 M⊙) which undergo the supernova phase on different times
to eventually produce a NS-NS binary. The latter is formed dynamically through
close gravitational interactions between individual NSs captured by their mutual
gravitational pull into a close system. This formation channel is relevant in very
dense and old stellar environment such as globular clusters. The description of the
steps that lead to the formation of the NS-NS binaries is far more complex than the
one depicted and beyond the scope of this work. The interested reader can refer to
Faber & Rasio (2012) and Mapelli (2017).

After the NS-NS system is formed, the latter will start losing energy due to GW
emission, causing the two compact objects to reduce their orbital separation and
inspiral towards one another. The GW luminosity of this emission progressively
increases leading the system to accelerate its coalescence until the two stars approach
a distance comparable to their size. At this point finite-size effects such as tidal
interactions become relevant, and may lead part of the NSs material to be disrupted
from the surface and expelled mainly over the equatorial plane of the system. When
the stars eventually come into contact the merger starts.
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3.1.2 Post-merger evolution and fate of the remnant
Unlike binary black hole (BH) mergers which can only result in the formation

of a more massive BH, NS-NS mergers can produce different post-merger scenarios
and remnants (see Fig. 3.1), leading to the formation of a BH, a stable NS or a
meta-stable NS, i.e. a NS whose collapse is sustained for a limited amount of time by
its rapid rotation. This last case can be divided into two sub-regimes: if the NS can
be supported against collapse by uniform rotation the star is called a supramassive
neutron star (SMNS) while if the star is so massive that it can only be supported by
differential rotation, it is called a hypermassive neutron star (HMNS). The latter
collapses when the NS core has acquired uniform rotation, around O(100ms) after
the coalescence.

Figure 3.1. Artistic representation of the different kinds of post-merger scenarios which
can take place for BH-NS and NS-NS coalescensces (Ascenzi et al., 2021).

During and after the merger of NS-NS systems part of the NSs material is
expelled and becomes unbound through a wide variety of channels. As already
mentioned, right before the merger tidal forces can cause the partial disruption of
the NSs launching material at mildly relativistic velocities on the orbital plane of
the system. Mass outflows can also be produced through various mechanisms acting
on the newly formed accretion disk (e.g. neutrino irradiation, nuclear recombination
and magnetohydrodynamic viscosity). Finally, further ejection of matter on a broad
angular scale is produced by the shocks taking place at the contact interface between
the two stars.

Two types of electromagnetic emission are mainly powered within these ejecta.
The first one is produced by a relativistic jet of matter (purple component in Fig. 3.2)
launched by the remnant through physical processes which are yet to be completely
understood. This jet drills through a dense circum-burst medium, previously expelled
by the merger (blue component in Fig. 3.2) which gets heated and moved aside by
the passage of the jet, forming an hot structure called cocoon (Ascenzi et al., 2021)
(yellow component in Fig. 3.2). When this jets starts dissipating its kinetic energy
(generally at a distance of ∼ 1013 − 1016 cm) it powers an intense γ emission which
is commonly referred to as gamma-ray burst (GRB) prompt emission. Later on, the
jet decelerates shocking the interstellar medium (in light blue in Fig. 3.2), powering
a fading synchrotron emission from X-ray to radio called GRB afterglow.

The other main component of matter released in the coalescence (blue and red
components in Fig. 3.2) is a quasi-isotropic component rich of free neutrons and
neutron-rich nuclei which composed of a superposition of various outflows. This
region represents an ideal site for the r-process nucleosynthesis of heavy elements.
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The products of the r-process nucleosynthesis are unstable and their radioactive
decay heats up the material itself powering a transient thermal emission from the
ejecta known as kilonova which we will discuss in more detail in Section 3.3. The
features of the kilonova emission are very sensitive to the properties of the progenitor
stars, such as their masses and EoS (Metzger, 2020). In Section 5.3 we will implement
a numerical pipeline that retrieves the masses and tidal deformabilities from the
photometric data of the kilonova AT2017gfo following the work done in Breschi et al.
(2021).

Figure 3.2. Overview of the structure of the ejecta launched during the a NS-NS merger
(Ascenzi et al., 2021).

3.2 Gravitational wave emission
As mention in Section 3.1, compact binary systems are expected to lose energy

through the emission of gravitational waves. The typical GW signal produced by a
NS-NS coalescence is presented in Figure 3.4 and it can be divided into:

• the inspiral signal: the signal produced when the two stars are so distant that
they can be treated as point-like masses;

• the merger signal: the signal produced when the stars come into contact and
merge to produce a single compact object. In this phase matter and finite size
effects become extremely relevant in the case of NS-NS mergers;

• the ringdown or post-merger signal: the signal produced by the damped oscil-
lations of the remnant through which it relaxes to a stationary configuration.

In the following we will comment on the properties of each signal individually,
focusing our attention on the late-inspiral signal which starts presenting the imprint
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of finite-size effects, such as the coupling between tidal interactions and the GW
emission, while being also potentially detectable by current GW interferometers.

3.2.1 Inspiral emission and tidal imprint
Let us call l the orbital distance between the neutron stars in the binary, while

denoting with lISCO = 6GM/c2 the innermost stable circular orbit1. The latter
represents the innermost stable circular orbit for matter which surrounds a compact
object. In our case lISCO is computed from the total mass of the binary (M =
m1 +m2) and denotes the characteristic orbital distance at which finite-size effect
become non-negligible. As long as the two objects are far away from each other, i.e.
l ≫ lISCO, and the weak field interaction is valid, the signal is well described by the
quadrupole formula. The frequency of the GW signal increases with time as:

νGW (t) = 53/8

8π

(
c3

GM

)5/8 1
(tc − t)3/8 , (3.1)

where tc represents a typical timescale of the coalescence time of the binary,

tc = 5
256

c5

G3
l40

µM2 , (3.2)

while M = µ3/5M2/5 is a combination of the binary reduced mass (µ) and total
mass to which all the inspiral signal properties directly depend, also known as chirp
mass. The time evolution of GW signal’s amplitude in the inspiral phase is described
by the following equation:

h0(t) = 4π2/3G5/3M5/3

rc4 ν
2/3
GW (t) . (3.3)

As consequence of the increase in the GW wave’s frequency and amplitude, the
signal in the inspiral phase is often called the chirp of the GW wave, referring to its
similarity to the chirp of a singing bird.

The inspiral is followed by the late inspiral, in which l ≳ lisco and the quadrupole
formula must be considered as the lowest order of a post-Newtonian (PN) expansion
(Blanchet, 2014) of the equations of motion in the parameter x = v/c, with v being
the characteristic orbital speed of the objects in the binary. These PN corrections
affect the evolution of the phase of the GW signal which in the early-inspiral phase
is determined by:

ϕGW (t) = − 1
16

(
c3

G

)5/3

(πMνGW (t))−5/3 + const. . (3.4)

The first correction to the phase is of order O(x) and proportional to the mass
ratio q = m1/m2, while spin corrections enter at O

(
x1.5) and O

(
x2) order. If the

two objects are NSs, tidal interactions also modify the GW phase in Eq. (3.4),
entering at O

(
x5) and O

(
x6) PN orders as leading contributions. These corrections

1In this case we are using the expression of the ISCO for a non-rotating compact object.
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are proportional, respectively, to the binary dimensionless tidal deformability (3.5)
and the tidal asymmetry parameter (3.6):

Λ̃ = 16
13

(m1 + 12m2)m4
1Λ1 + (m2 + 12m1)m4

2Λ2
(m1 +m2)5 , (3.5)

δΛ̃ = 1
2

[√
1 − 4η

(
1 − 13272

1319 η + 8944
1319η

2
)

(Λ1 + Λ2)

+
(

1 − 15910
1319 η + 32850

1319 η
2 + 3380

1219η
3
)

(Λ1 − Λ2)
]
.

(3.6)

Note that in Eq.(3.6) the parameter η refers to a symmetric combination of the
binary stellar masses, also known as symmetric mass ratio, which is computed as:

η = m1m2
M2 (3.7)

Overall, the effect of tidal interactions on the on NS-NS system is to enhance the
gravitational wave emission of the binary and thus accelerate the coalescence. This
effect is shown in Fig. 3.3 where mock GW signals of NS-NS binaries having different
Λ̃ are compared (Chatziioannou, 2020).

Figure 3.3. Rescaled GW signal amplitude for NS-NS systems with different dimensionless
tidal deformability (Chatziioannou, 2020).

Both η and Λ̃ are parameters that depend on the NS EoS and thus will be the
quantities of interests for the parameter estimation analysis campaign carried in
Chapter 5. Note, however, that a large signal to noise ratio is needed to retrieve
the PN tidal correction from the GW detector noise and that the effect of tidal
interactions become as more significant as the stars approach the next evolutionary
phase of the coalescence, the merger, to which current GW detectors are less
sensitive (see 3.2.2 for more details). Nevertheless, the tidal correction in Λ̃ is indeed
measurable thanks to the fact that the dimensionless tidal deformabilities Λ1 and
Λ2 are large for realistic EoSs (Chatziioannou, 2020). This is not also the case for
the correction in δΛ̃ which is more problematic to retrieve from GW signals as we
will observe in 5.1.2.

3.2.2 Merger and post-merger emission
In the merger phase, the GW signal of the binary is strongly affected by strong

non-linear effects, partially taken into account in the PN approach. The correct GW
signal can only be obtained by solving the complete non-linear Einstein equations
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along with the equations of general relativistic hydrodynamics (GRHD). This is
usually done in Numerical Relativity simulations (NR) which, however, are compu-
tationally expensive, especially when a large number of templates is needed, in order
to build template banks of GW signals.

Similarly to the merger, the post-merger dynamics and the corresponding GW
spectrum is also affected by a jungle of physical processes (thermal effects, turbu-
lences, neutrino emissions, etc.). However, it emerged from Numerical Relativity
simulations that, for most EoSs and NS masses, a hypermassive NS is created and
sustained for a time of O(10 − 100) ms by its rotation. Moreover, simulations make
a robust empirical prediction that during this time the star emits gravitational waves
preferably at a characteristic frequency of 1500-4000 Hz, also known as f -mode,
which is beyond the frequency sensitivity range of current GW detectors.

Although remaining unobserved, the post-merger signal represents an extremely
interesting target for next generation detectors, like the Einstein Telescope, since
it can probe different regimes of temperature, density and EoS as the hot remnant
star will have a higher central density with respect to its progenitors.

Figure 3.4. Representative example of the GW signal emitted by a coalescing NS-NS
binary obtained from a NR simulation. Top panel: GW signal emitted during the last
orbits before the merger (late-inspiral phase) and during the postmerger phase of the
NS-NS coalescence. Bottom panel: Rest-mass density evolution for the inspiral (first
panel), the merger (second panel) and the postmerger phase after the formation of the
black hole (third panel) (Dietrich et al., 2021).

Basic concepts of GW detection. In the following we review the simple model
on which modern GW interferometers are based as well as introduce some useful
quantities concerning the detection of GWs which we will use in Chapter 5.

The fundamental working principles of the optical configurations behind current
GW detectors are build on the Michelson interferometer, schematically shown in
Fig. 3.5.
This device is composed of two orthogonal arms each having, at one end, a mirror.
Light is injected at the other end of one of the two arms, gets splitted at the center
of the interferometer by a beam splitter, and directed onto the mirrors. The beams
go back and forth along the arms, and when they reach the detector they produce
an interference pattern which depends on the delay between their arrivals. In its
unperturbed configuration the two arms of the Michelson interferometer have the
same length so that the two beams arrive at the detector at the same time. If some



3.2 Gravitational wave emission 38

physical process introduces a delay between the beams, for instance changing the
length of the two arms, it is detected by the presence of a different interference
pattern. Modern interferometers are more sophisticated than this simple model but
are based on the same concept: if a GW passes through the instrument it perturbs
the length of the two arms introducing a delay between the light beams and, thus,
producing an interference pattern.

Figure 3.5. Schematic view of a Michelson interferometer (Ferrari et al., 2020).

The magnitude of this perturbation is extremely small, with an order of magnitude
of one part on 103 of the size of a proton, such that GW signals detected by LIGO
and Virgo are essentially drowned in the noise of the interferometer and require
sophisticate data-analysis tools to be identified and correctly interpreted. We can
describe the signal in the interferometer as

s(t) = h(t, θ⃗) + n(t) , (3.8)

where h is the actual GW signal (which depends on the system parameters θ⃗) and n
is the noise of the interferometer which we assume to be stationary Gaussian. To
assess if a given perturbation in the instrument is caused by the passage of a GW
we can, then, compare the intensity of the signal to the noise background of the
detector through the signal-to-noise-ratio (SNR), defined as

SNR = (h|h)
1
2 =

(
4
∫ ∞

0

|h̃(f)|2

Sn(f) df
) 1

2

, (3.9)

where h̃(f) is the Fourier transform of the signal, while Sn(f) is the power spectral
density (PSD) of the interferometer and describes the power of the detector noise
in the frequency domain. Note that the internal product (·|·) between two signals
h(t), g(t) is defined as

(h|g) = 2
∫ ∞

0

h̃(f)∗g̃(f) + g̃(f)∗h̃(f)
Sn(f) df . (3.10)
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3.3 Kilonovae
In Section 3.1 we introduced the various mechanisms which contribute to unbind

part of the material of two NSs during the last phases of a NS-NS coalescence.
These ejecta are characterized by a high density of free neutrons and neutron-rich
nuclei representing the perfect environment for r-processes, rapid and sequential
neutron captures on heavy nuclei seeds. The nuclei synthesised by r-processes
promptly undergo radioactive decay powering a quasi-isotropic emission in the radio,
infrared, optical and UV bands called kilonova. This transient was firstly observed,
concurrently to the GW signal emitted by GW170817, in 2017 about ∼ 11 h after
the merger. This kilonova is commonly known as AT2017gfo and represents a unique
source of information on the physical processes triggered by the coalescence of NS-NS
binaries.

In this Section we provide an overview of the theoretical background behind
kilonovae also mentioning the general ingredients of a kilonova multicomponent
model which we will need for the analysis conducted in Section 5.2.

3.3.1 Toy model
Let us introduce a kilonova toy model based on the simple model discussed in

Tanaka (2016). This toy model depends on three basic assumptions:

1. the ejecta is composed of a single spherical component;

2. the ejecta is homogenous;

3. the ejecta expands at constant velocity, (homologous expansion).

These assumptions are rather simplistic but result being very useful to easily obtain
the dependence of the luminosity and of its peak, on some of the physical properties
of the ejecta such as its mass, velocity and opacity. Let us start by estimating the
optical depth of the ejecta τ :

τ(t) = ρ(t)kR(t) , (3.11)

where ρ, k and R are respectively the mass density, the opacity and radius of the
ejecta. Since the latter is assumed to be spherical and homogeneous, the density
can be computed as

ρ = 3Mej

4πR(t)3 , (3.12)

while from the homologous expansion hypothesis we derive that R(t) = vej · t.
Substituting these two relations into Eq. (3.11) we obtain:

τ(t) = 3Mejk

4πv2
ejt

2 . (3.13)

The diffusion time, i.e. the timescale photons need to escape the ejecta, is propor-
tional to τ and can be derived as

tdiff = R

c
τ . (3.14)

Depending on the value of tdiff with respect to the dynamical timescale of the
expansion, photons might be trapped inside the ejecta (tdiff ≫ t) or be able escape
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efficiently (tdiff ≪ t). The luminosity peak of the kilonova is obtained when the
timescale of expansion is comparable the diffusion timescale. This last statement is
known as Arnett’s law (Arnett, 1982), given by:

tdiff(tpeak) = tpeak . (3.15)

Using Eqns. (3.11), (3.14) and (3.15) we obtain the expression of the kilonova peak
luminosity time:

tpeak =
(

3kMej

4πcvej

)0.5

≃ 8.7 days
(

Mej

0.01M⊙

)1/2 ( vej

0.1c

)−0.5 ( k

10cm2g−1

)0.5
.

(3.16)
On the right hand side of Eq. (3.16) we have recast tpeak in terms of the mass,
velocity and opacity of the kilonova ejecta normalized to some typical scales.

To estimate the peak luminosity let us note that the luminosity of the radioactive
decays in the ejecta at a generic time can be evaluated as:

L(t) = Mej ϵ̇n(t) , (3.17)

where ϵ̇n is the radioactive heating rate per mass unit which evolves in time following
the power law (Tanaka, 2016):

ϵ̇n(t) ≃ 2 · 1010erg/s · (t/1 day)−1.3 . (3.18)

Since just a part of this energy is deposited in the ejecta2 we shall express the
deposition luminosity as:

Ldep = ϵdepMej ϵ̇n(t) (3.19)
with the energy deposition fraction, ϵdep, approximately equal to 0.5 (Tanaka, 2016).
By substituing Eq. (3.18) and Eq. (3.16) into Eq. (3.19) we obtain that:

Lpeak = ϵdepMej ϵ̇n(tpeak)

≃ 1.3 · 1040erg/s
(
ϵdep
0.5

)0.5 ( Mej

0.01M⊙

)0.35 ( vej

0.1c

)0.65 ( k

10cm2g−1

)−0.65
. (3.20)

From Eq. (3.16) and (3.20) we observe that the overall evolution of the kilonova
luminosity is dictated by the mass, velocity and opacity of the ejecta.

3.3.2 The role of opacity: blue and red kilonova
As seen in Section 3.3.1, opacity plays a leading role in determining the luminosity

evolution and the spectral features of the kilonova. In particular, a very opaque
ejecta produces a transient which is less bright and evolves on longer time scales
than a low opaque ejecta. The opacity of a kilonova is predominantly determined
by the presence of lanthanides and attanides which are ideal to absorb and re-emit
a wide variety of photons thanks to their complex electronic structure. Most of
lanthanides and actanides are synthesised in the ejecta by r-processes, i.e. rapid
sequential captures of free neutrons on heavy nuclei seeds. These processes are rapid
in the sense that neutron captures happen on faster timescales than β decays and
fission reactions.

2For instance the neutrinos produced by β-decays do not contribute to the energy deposited into
the ejecta.
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As already mentioned in Section 3.1, r-processes are triggered in environments with
large densities of free neutrons and heavy nuclei seeds, therefore, the efficiency of
the lanthanides and actanides production can be expressed in terms of the electron
fraction of the ejected matter:

Ye = np

nn + np
, (3.21)

where np and nn are the proton and neutron number densities. The lower is Ye,
the more neutron rich is the environment. A typical threshold for lanthanides
production is set to Ye ≈ 0.25: above this threshold the synthesis is efficient, below
it the production is considered to be inhibited. Another useful parameter used to
describe the opacity of the ejecta is the lanthanide fraction Xlan = Mlan/Mej which
gives the ratio between the mass of the lanthanides in the ejecta and the mass of
the ejecta itself. In Figure 3.6 we can observe the effect of opacity on the kilonova
emission in delaying the peak of the kilonova and shifting it to redder bands, i.e.
bigger wavelengths.

Figure 3.6. Comparison between model ejecta with same mass and velocity but different
lanthanides fraction. In a. are presented the models bolometric lightcurves which show
a slower evolution for higher values of Xlan/opacity. In b. are presented the different
spectra obtained 4.5 days after the merger. The ejecta with higher Xlan obscures the
optical bands and shift the emission primarily to the infrared (Kasen et al., 2017).

As we shall discuss in 3.3.3, the structure of NS mergers’ ejecta is thought to be
much more complex than the one depicted in the toy model in 3.3.1 and components
with different masses, velocities and Ye/Xlan (opacity) contribute to the final kilonova.
In general, the kilonova emission is considered to be composed of two sub-emissions:
a fast blue kilonova, produced by lanthanide-poor/less opaque ejecta, and a slow
red kilonova, produced by lanthanide-rich/very opaque ejecta. This distinction was
also suggested by the spectral evolution of the kilonova AT2017gfo (Kasen et al.,
2017) which was firstly observed in the optical band fading rapidly within days while
remaining bright in the infrared band for nearly two weeks (Abbott et al., 2017a).

3.3.3 Multi-component model
Although the toy model described in 3.3.1 is very useful to understand the main

dependencies of the kilonova’s features on the properties of the ejected matter, it
is too simple to depict the evolution of the kilonova AT2017gfo. This was already
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observed in 3.3.2, where we introduced two sub-emissions which contribute to the
final kilonova and have to be produced by environments with different chemical
compositions. Additionally, hydrodynamical simulations of NS-NS mergers also
suggest that several ejection mechanisms occur at different times of the merger
producing ejecta components with different mass, velocity and electron fraction.
Indeed, some of the NSs matter is released dynamically within milliseconds of the
merger (dynamical ejecta). Two main mechanisms contribute to this ejecta (Metzger,
2020). First, material at the contact interface between the stars is squeezed out
and subsequently expelled by the quasi-radial pulsations of the remnant on a broad
angular scale (especially near the polar region). These ejecta have a higher Ye because
the shocks to which they are subjected induce pair-productions and consequently
lead to the capture of positrons by neutrons (Ascenzi et al., 2021). Secondly, some
of the material is disrupted from the NSs by their mutual tidal interactions and
spread mostly in the equatorial region through angular momentum transport by
hydrodynamical processes.

Additional matter is ejected after the dynamical timescale and continuing for up
to ∼10 s after the merger. Indeed, all NS-NS mergers and BH-NS mergers in which
the NS is disrupted outside the BH horizon lead to the creation of an accretion
disk around the remnant object. Several physical processes can induce the ejection
of some of the disk mass producing the so-called disk outflow ejecta. For instance,
in NS-NS mergers which result in a supramassive/hypermassive NS, the ejection
happens while the remnant is still a relevant source of neutrinos. The neutrino
irradiation can unbind part of the material of the accretion disk (neutrino-driven
wind ejecta) and drive the wind outflow’s Ye to larger values. In addition to neutrinos,
viscous torques of dynamical and magnetic origin can also unbind matter from the
accretion disk (viscous ejecta) (Metzger, 2020).

Figure 3.7. Overview of the different ejecta components characterizing BH-NS mergers
and NS-NS mergers (Metzger, 2020). In both scenarios, the dynamical ejecta in the
equatorial plane is highly neutron-rich (Ye ≲ 0.1) and contributes to the red kilonova
emission. Mass ejected dynamically in the polar directions may be sufficiently neutron-
poor (Ye ≳ 0.3) to inhibit lanthanide production and power blue kilonova emission. The
innermost ejecta layers originate from accretion disk outflows. When the merger results
in the prompt formation of a BH, the disk wind ejecta is mainly neutron-rich, powering
the red kilonova emission. If the remnant is instead a NS long-lived relative to the
disk lifetime, then neutrino emission can increase Ye sufficiently to suppress lanthanide
production and result in blue disk wind emission.

The relative importance of all these components and the processes depends on
many factors such as the merger remnant nature (NS/BH) and mass (Figure 3.7)
and the EoS. In the next Sections we will see how these information on the system
properties can be retrieved from the kilonova focusing on the link between the
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features of the emission and of the ejecta, and the EoS of the NS progenitors.
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Chapter 4

Bayesian inference

Before focusing on the analysis of actual and mock data for the GW and the
kilonova signals produced by NS-NS mergers, we must introduce the statistical tools
needed to extract relevant information from the data. In particular, we will review
the theory behind Bayesian inference and parameter estimation in Section 4.1 and
4.2 while in Section 4.3 we will describe the basic principles of Monte Carlo Markov
Chains (MCMC) methods. The latter represent a class of algorithms broadly used
to efficiently evaluate the probability distribution of large sets of parameters. In
Section 4.4 we will define a category of MCMC samplers, the affine invariant MCMC,
whose application to the case of NS-NS mergers is then presented in Section 4.5.

4.1 Bayes theorem
Bayes inference provides a powerful approach, widely used in a large variety

of scientific branches, to analyze and interpret experimental results. It allows to
assess the validity of a certain model or hypothesis for a specific set data, a common
problem in science where, given the outcome of an experiment, it is desirable to
understand its causes and possibly test different hypothesis against each other. Bayes
theorem is mathematically translated by the following relation:

P (H|d) = L(d|H)P (H)
P (d) , (4.1)

where its ingredients are:

• the likelihood, L(d|H): this is the probability of the data d being produced
under the assumption of the hypothesis H.

• the prior, P (H): this represents the prior knowledge we might have on the
hypothesis H being true.

• the evidence, P (d): this is commonly considered as a normalization factor
such that

∫
p(H|d)dH = 1, however evaluating this quantity becomes crucial

in model selection applications.

• the posterior, P (H|d): this is the probability of the hypothesis H being true
given we measured the data d.
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4.2 Parameter estimation
In parameter estimation the hypothesis is represented by a set of parameters,

θ, that describe the model we assume to have produced our data, d. The goal
of parameter estimation is, therefore, to infer the value of the most likely set of
parameters compatible with the observation. In this framework the Bayes theorem
can be expressed as:

P (θ|d) = L(d|θ)P (θ)
P (d) = L(d|θ)P (θ)∫

Θ P (θ) · L(d|θ)dθ . (4.2)

Since we are now interested in evaluating the relative posterior probabilities of
different sets of parameters we can ignore the evidence which is the same for sets
of parameters describing the same model. Then the posterior probability can be
simply rewritten as:

P (θ|d) ∝ L(d|θ)P (θ) . (4.3)
For instance, in the case of GW analysis, the data d is given by the strain extracted
from interferometers, while the parameters θ represent the physical quantities
describing the compact binary system and its position in the sky (e.g. masses, spins,
etc.).

In general, one is interested in getting the posterior of a subset of all the
parameters. To obtain the posterior of a single parameter θi we have to marginalize
over the other quantities (the so-called nuisance parameters) as following:

P (θi|d) =
∫

Θ
P (θ|d) · dθ1...dθi−1dθi+1...dθn . (4.4)

Statistical indicators, such as the expected value E[f ] of a certain quantity f which is
function of the parameters θ, can then be computed by integrals over the marginalized
posterior, namely:

E[f(θ)] =
∫

Θ
P (θ|d)f(θ)dθ . (4.5)

Prior. As we have already mentioned, the prior represents the a priori knowledge
one has over the quantity studied. Commonly, if no a priori knowledge is available
for a certain parameter θi then the prior is chosen to be a uniform distribution over
a reasonable range of values for θi. In this case the prior takes the form:

P (θi) =


1

θ
(M)
i −θ

(m)
i

if θi ∈ [θ(m)
i , θ

(M)
i ]

0 else
(4.6)

where θ(M)
i , θ

(m)
i are, respectively, the maximum and the minimum value accepted

for θi.

Likelihood. The most common and easy way to describe the likelihood is by
defining it to be a Gaussian distribution1. Note that defining a likelihood function

1This is, for instance, a good starting point for strain noise in GW detectors since the superposition
of random noise processes tends to produce a nearly Gaussian distribution. However, if one wants
to include non-Gaussian sources of noise (e.g. glitches) the likelihood distribution must be redefined
accordingly (Thrane & Talbot, 2019).
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implicitly assumes a noise model (Thrane & Talbot, 2019). If one also assumes the
data points xi of the set d to be statistically independent, the likelihood takes the
form:

L(d|θ) ∝
N∏

i=1
exp

(
−(xi − µi(θ))2

2σ2
i

)
, (4.7)

where µi(θ) is the expected value for xi given the chosen model’s paramaters θ,
σi is the noise standard deviation, and N is the total number of data points in d.
Equation (4.7) is equivalent to:

L(d|θ) ∝ exp
(
−χ2

)
, (4.8)

where the chi-squared function χ2 is defined as:

χ2 ≡ χ2
i (x⃗, µ⃗(θ), σ⃗) =

N∑
i=1

−(xi − µi(θ))2

2σ2
i

(4.9)

4.3 Monte Carlo Markov Chains
Our goal in the next Sections will be to infer the posterior distribution of

parameters describing NS-NS mergers and nucleon interactions inside the star in a
Bayesian framework. The posteriors will computed exploiting Eq. (4.3) using specific
sampling algorithms called Monte Carlo Markov Chains (MCMC). The need to use
suited numerical strategies to produce the posterior distributions will become clear
with a simple example inspired by Thrane & Talbot (2019).

An intuitive inference example. Imagine we want to compute the posteriors of
some parameters describing a BH-BH merger. For sake of simplicity, let us assume
our model depends on 2 parameters only, for example Mchirp and dL, and assign
for each parameter 10 bins. We can think of the parameter space as a grid 10x10
with each parameter on a different side of the grid. For each square in the grid we
would need to evaluate the likelihood2 and compute the posterior using Eq. (4.3).
This would take 102 operations: the chosen strategy is computationally expensive
but still viable. However, what happens if the parameters become 15? We would
need to compute 1015 operations and our procedure would become computationally
prohibitive. In this sense, we can say that our calculations suffer the curse of
dimensionality.

A solution to this problem is represented by stochastic samplers. These samplers
are very convenient, for instance, to compute the expected value of a function of
the parameter set θ. Indeed, if the samples are drawn independently each one from
another, then the law of large numbers tells us that the approximation

E[f ] =
∫

θ
P (θ|d)f(θ)dθ ≈ 1

N

N∑
i=1

f(θi) (4.10)

is as more valid as larger is the number of samples N . Moreover, we can imagine
the sampled posterior in a multidimensional space as a spreadsheet, the columns

2Here we are assuming the prior function to be uniform, i.e. constant over the grid.
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of which are represented by parameters in θ. This has the advantage that if one is
interested in computing the marginalized posterior of a subset of the parameters
then they can simply "select" the corresponding columns in the spreadsheet (Thrane
& Talbot, 2019).

Markov chains. Although randomness has its own advantages, we do not want
our algorithm to sample in a completely random way. For instance, we would prefer
our algorithm to explore the regions of the posterior at high probability rather then
the ones at low probability. To do so, we might allow the algorithm to keep track of
its previous positions in the parameter space.

Formally speaking, a sequence of events in which the probability for a given
event to happen only depends on the previous event is called a Markov chain or
Markov process. This property can also be expressed as (Sharma, 2017):

Prob(X(tn+1)|X(t1), X(t2), ..., X(tn)) = Prob(X(tn+1)|X(tn)) , (4.11)

with X(t1), .., X(tn) sequence of random variables. Furthermore, if the probability
of transitioning from a certain state to another is also independent of the number
of steps done, the chain is called a homogeneous chain. Such a chain is defined by
specifying the transitioning probability from one state to another. To summarize,
the probability of moving from one state X(tn) to another X(tn+1) does not depend
on tn and it can be defined as:

Pij = P(X(tn+1) = xi|X(tn) = xj) = Prob(X(tn+1) = xi|X(tn) = xj) , (4.12)

where Pij is called the transition matrix. In general, the probability of the chain
being in a state X(tn) = xi depends both on the time step and on the initial
condition X(t0) = x0 from which the chain has evolved. This does not happen
only if a time-homogeneous Markov chain has an asymptotic stationary distribution,
meaning that there exist a probability distribution π independent of tn and X0 such
that:

lim
tn→∞

|P(tn)(X(tn) = xi|X(t0) = x0) − π(xi)| = 0 , (4.13)

where P(tn)(X(tn)|X(t0) = x0) means that the chain starts at the initial state is
X(t0) = x0 and then is evolved applying tn-times the transition matrix/operator
P(·|·) such that the larger tn, the more the final distribution will approach the
stationary distribution π. The time-homogeneous Markov chain converges to an
asymptotic stationary distribution only if it is:

• irreducible: it can go from any state xi to any other state xj in a finite number
of steps;

• positive recurrent: if the initial state is X(t0) = x0 is sampled from π then all
the following states will be sampled from π;

• aperiodic: it is impossible for the chain to oscillate periodically between two
states.

In general, the probability of sampling the state xi at the time tn+1 is given by:

Prob(X(tn+1) = xi) =
∑

j

Pij · Prob(X(tn) = xj) . (4.14)
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If the Markov chain has an asymptotic stationary distribution π Eq. (4.14) becomes:

πi =
∑
j ̸=i

Pij · πj , (4.15)

where πi = π(xi). From this relation we can derive a fundamental equation describing
Markovian processes (Angelini, 2022). First, let us note that

∑
i Prob(X(tn+1) =

xi) =
∑

i πi = 1 (normalization condition). If we sum Eq. (4.15) over i then we get:

1 =
∑

j

πj

∑
i

Pij , (4.16)

which is satisfied if also
∑

i Pij = 1. Exploiting this property of Pij , we can say that
πi =

∑
j Pjiπi. Finally, substituting into Eq. (4.15) we can get the relation:

Pjiπi = Pijπj , (4.17)

which is called the condition of detailed balance. If a Markov chain has a stationary
distribution which satisfies Eq. (4.17) then the chain is said to be reversible. Infact,
the condition of detailed balance basically states that the probability of the present
state to be xi having a previous state xj (i.e. Pjiπi) is equal to the probability
of the time-reversed process (i.e. Pijπj). The condition of detailed balance repre-
sents a sufficient condition for the convergence of the Markov Chain to a stationary
distribution and thus is an extremely powerful tool to define the transition matrix Pij .

Monte Carlo Markov chains are a class of methods for sampling a posterior using
Markov chains whose stationary distribution is the desired distribution, in our
case the parameter posteriors. The convergence to the stationary distribution is
guaranteed by the fact that they are designed to satisfy the condition of detailed
balance.

4.3.1 Metropolis-Hasting algorithm
One way to satisfy Eq. (4.17) is by choosing the following transition matrix:

Pij = min
(

1, πi

πj

)
. (4.18)

This choice of Pij means that the chain certainly moves from the state xj to the state
xi if the probability of xi is higher than the one of the previous state (πj/πi < 1).
If not, the transition probability is as low as less likely the state is with respect to
the previous one and the transition is not accepted if the probability of xi is null
(πi = 0). Equation (4.18) can be modified in order to take into account some a-priori
knowledge we might have on the choice of the move:

Pij = uij · min
(

1, πi

πj

)
. (4.19)

The symmetric uij = u(xi, xj) matrix describes the probability of proposing the
move i → j and as such is also called proposal distribution. In the same way, we
can define a matrix called aij = min (1, πi/πj) which represents the acceptance rate
of the proposed move. The transition matrix in Eq. (4.19) defines the so-called
Metropolis-Hastings (MH) algorithm (Metropolis et al. (1953); Hastings (1970))
which is described schematically below:
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initiate X0
for j = 1, 2, .., N :

sample Xj from u(·, Xj−1)
sample a normally distributed variable U
if U < Pij accept the move
otherwise reject the move: Xj = Xj−1

Weak points of MH and solutions. This kind of algorithm is the foundation
of modern sampling algorithms using MCMCs. However, new samplers stemmed to
address the limitations of the MH algorithm. Some of the issues of MH arise from
the questions:

1. At what point are the samples representative of the desired distribution?

2. How do we efficiently sample multimodal distributions?

3. How should the scale of the chain’s step-size be chosen?

The first issue is linked to the fact that the MCMC samples a distribution which
converges to the stationary distribution only after a fair ammount of steps. Thus
the first draws of the MCMC which are not representative of the desired distribution
should be discarded. This is commonly called the burn-in process.

The second issue refers to the fact that for multimodal target distributions we
must define a strategy to distinguish between local convergence (local maxima of the
posteriors) and absolute convergence (absolute maximum). Furthermore, this issue
becomes increasingly troublesome as more the local peaks resemble the absolute one
and when the peaks are very high compared to their surroundings. This commonly
leads MH algorithms to stall on one local peak rather then exploring other regions
of the parameter space. One thorough strategy is represented by the flattening of
the posterior. Instead of the posterior P (θ|d) let us sample:

PT (θ|d) = e
1
T

ln P (θ|d) , (4.20)

where T > 1 is often called temperature in analogy to thermodynamic systems. The
larger is T the less significant the difference between the peaks and their surrounding.
This allows the chain to explore more easily different peaks of the distribution. This
idea inspired the parallel tempering algorithm (Geyer, 1991) where different chains
are ran in parallel at different temperatures and can communicate between one
another in such a way that the condition of detailed balance is still satisfied.

The last issue can be understood by making some intuitive examples. Assume
the MCMC starts at some random point in the parameter space. There is no reason
to believe that this initial position is in the proximity of the peak of the distribution,
thus it is desirable for the next chain step to be large enough to move closer to points
of higher probability. However, having reached the proximity of the distribution
peak after a certain number of iterations it would be inefficient to fix the step size
to the initial one. Infact, if the step size is not representative of the width of the
peak of the target distribution then it will be increasingly difficult to find points of
higher probability, i.e. the MH algorithm will continuously refuse the proposed steps
and the chain will stall. Let us make another example considering the following 2-D



4.4 Affine invariant MCMC sampling 50

distributions (Miller, 2018):

PA(θ1, θ2) = 1
2πe

−θ2
1/2e−θ2

2/2 ; PB(θ1, θ2) = 1
2πe

−(θ1−θ2)2/2e−(θ1+θ2)2/2 . (4.21)

The contours of these target distribution for e−1/2 times the maximum probability
density are presented in Figure 4.1. Imagine the MCMC reached these portions of
the parameter space and now we wish to decrease the step size3 to explore more
efficiently the peak of the distributions. We might decide to shorten the step size
equally in the θ1- and θ2-direction. This strategy works to sample PB’s peak but
it is not efficient for PA. Complications arise due to the geometry of the contour
for PA which is very anisotropic compared to the circular contour obtained for
PB. Following this strategy for PB, the step size should be shrunk down to some
fraction of the minor axis of the tilted ellipse and this would result in much slower
convergence of the MCMC. We shall discuss in the next Section a revised version of
the MH algorithm introduced by Goodman and Weare (Goodman & Weare, 2010)
which solves this issue by taking into account in a clever way the shape of the
distribution.

Figure 4.1. Contours of the probability distributions in Eq. (4.21) for P (θ1, θ2) = e1/2

times the maximum probability density (Miller, 2018).

4.4 Affine invariant MCMC sampling
The sampling method suggested in Goodman & Weare (2010) is an affine

invariant ensemble sampler. Ensemble samplers are samplers for which a certain
number of chains are initiated at different positions in the parameter space and
then evolved in parallel. The chains that constitute the ensemble are usually called
walkers. The affine invariance property implies that the performance of the method
is independent of the aspect ratio in highly anisotropic distributions. An affine
transformation is a map between Rn and Rn of the form Y = A ·X + b. If X has
probability distribution π(X) then Y has a probability distribution:

π(Y )A,b = A · π(X) + b ∝ π(X) . (4.22)
3For simplicity we are considering an initial step which has the same size in the θ1-direction and

the θ2-direction.
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Let us consider a very anisotropic distribution, similar to PB presented in Eq. 4.21:

π(θ1, θ2) ∝ e−(θ1−θ2)2/2ϵe−(θ1+θ2)2/2 , (4.23)

where the parameter ϵ determines the aspect ratio of the elliptic contours of the
distribution. In the regime ϵ ≪ 1, the ellipses become more and more stretched
and the treatment of the chain step size gets very problematic for standard MCMC
algorithms. However, if one introduces the affine transformation:

ϕ1 = (θ1 − θ2)/
√
ϵ , ϕ2 = θ1 + θ2 , (4.24)

the distribution in Eq. (4.23) takes a much simpler form:

π(ϕ1, ϕ2) ∝ e−ϕ2
1/2e−ϕ2

2/2 , (4.25)

which is a well scaled distribution that does not require detailed customization.
The idea behind affine invariant samplers is to update the position of each

walker in the parameter space based on an affine invariant transformation which
is constructed using the current positions of the other walkers4. Let us analyse in
more detail the updating procedure of the ensemble. Imagine we have L walkers
denoted with X⃗(t) = [X1(t), X2(t), ..., XL(t)]. One step of the ensemble, one overall
update, consists of one cycle over the L walkers:

for k = 1, 2, .., L:
update Xk(t) → Xk(t+ 1)

The position of a generic walker Xk(t) is updated exploiting the information on the
position of the remaining L− 1 walkers, i.e. the so-called complementary ensemble:

X⃗[k](t) = {X1(t+ 1), X2(t+ 1), ..., Xk−1(t+ 1), Xk+1(t), ..., XL(t)} . (4.26)

The simplest update algorithm recommended in Goodman & Weare (2010) is the
stretch move. In the stretch move the position of a walker Xk(t) is updated based
on the position of one randomly-picked walker Xj belonging to X⃗[k](t) (i.e. j ̸= k).
More specifically, the proposal is of the form:

Xk(t) → Y = Xj + Z · (Xk(t) −Xj) , (4.27)

with Z being a scaling variable the distribution of which is often chosen to be:

g(Z) ∝
{

1
Z if Z ∈

[
1
a , a

]
0 otherwise.

, (4.28)

where a > 1 can be adjusted to improve the MCMC performance. A common
choice is a = 1/2. Assuming the parameter space has n parameters, the appropriate
acceptance rate for this move is:

ajk = min
[
1, Zn−1P (Y (Xj , Xk(t))

P (Xk(t))

]
. (4.29)

4This is of course different from the example presented at the beginning of the Section where
the expression of the target distribution was supposed to be known a-priori.
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The update operation Xk(t) → XK(t+ 1) is structured as following:

for k = 1, 2, .., L:
choose Xj ∈ X⃗[k](t) at random
generate Y = Xj + Z(Xk(t) −Xj)
accept, set Xk(t+ 1) = Y , with probability (4.29)
otherwise reject, set Xk(t+ 1) = Xk(t)

Figure 4.2. Simple representation of a stretch move. The gray dots represent the walkers
not participating in the move. The proposal is generated by stretching along the straight
line connecting Xj to Xk (Goodman & Weare, 2010).

In the next Section we will review the Fortran implementation of Goodman &
Weare (2010) algorithm which we will use in Chapter 5 to perform the parameter
estimation on the NS-NS mergers GW and kilonova signals.

4.5 Our case of study: retrieving nucleon interactions
In Section 2.3 we have introduced the NS EoS properties and described the

theoretical model employed in Sabatucci et al. (2022) to describe nuclear dynamics
within NSs. The latter is defined by a non-relativistic nuclear many-body hamiltonian
(Eq. 2.31) which is modified by introducing a free parameter called α that defines
the amplitude of three-nucleon repulsive interactions. These interactions are hardly
constrained above saturation density and largely determines the NS EoS stiffness.
Therefore, we are now interested in defining a method through which α can be
retrieved from the GW and kilonova signals of NS-NS mergers, in particular from
the binary symmetric mass ratio, η , and tidal deformability, Λ̃ (see Section 3.2).
The posterior of η and Λ̃ will be recovered from the signals following the methods
described in Section 5.1 (GW data) and 5.2 (kilonova data). For our purpose now,
we assume to have already obtained them from the data.

4.5.1 Inference framework
As explained in Sabatucci et al. (2022), Bayes theorem can be exploited in such

a way as to link the posterior of parameters describing the stellar interior to the
posterior of the average macroscopic quantities characterizing the stars, such as the
masses and the tidal deformabilities. In our case, the interior parameters are the
two stars central pressures, p(1)

c and p
(2)
c , and the three-nucleon repulsive potential

amplitude, α. These parameters completely determine the EoS of the stars as well
as their macroscopic properties. Denoting with θ the set of the interior parameters
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and with O the observed astrophisical data set, we can rewrite:

P (θ|O) ∝ P0(θ) · L(O|D(θ)) , (4.30)

where D(θ) is the set of NS observables that can be inferred from the data. In
our case, O corresponds either to GW strain data modeled on the properties of
GW170817/GW190425 or on the data of AT2017gfo, while D(θ) correspond to the
chirp mass Mchirp, the symmetric mass ratio η and the binary tidal deformability Λ̃.
Thus, the likelihood in Eq. (4.30) can be rewritten as L(O|η, Λ̃,Mchirp). The latter
can be evaluated from the joint posterior P (Mchirp, η, Λ̃|d) exploiting again Bayes
theorem. This calculation can be simplified beforehand by exploiting the accuracy
to which the chirp mass is inferred from GW signals and fixing it to its median
value5. This reduces the parameter space speeding up the likelihood evaluation and
allowing us to compute the mass of the secondary NS directly from the mass of the
primary object, i.e. m2 = m2(Mchirp,m1).

Taking all the previous considerations into account, Eq. (4.30) becomes:

P (α, p(1)
c |O) ∝ P0(α, p(1)

c , p(2)
c ) · L(O|η, Λ̃,Mchirp = M∗) , (4.31)

where M∗ is the estimated median value of Mchirp and the likelihood function
is evaluated as in Eq. (4.32). The latter can be further simplified by replacing
the conditional posterior P (η, Λ̃|O,Mchirp = M∗) with the marginalized posterior
P (η, Λ̃|O). This can be done with good accuracy as shown in Raaijmakers et al.
(2021), such that:

L(O|η, Λ̃,Mchirp = M∗) = P (η, Λ̃|O)
P0(η, Λ̃)

. (4.32)

Since the priors on Λ̃ and η were always chosen to be uniform we can re-express
Eq. (4.32) in a logarithmic form as:

log L(O|η, Λ̃,Mchirp = M∗) = logP (η, Λ̃|O) + C , (4.33)

where C = logP0(η, Λ̃) is the constant factor which we ignore in the sampling
procedure.

4.5.2 Sampling procedure

The posterior P (α, p(1)
c |O) is evaluated from the posterior P (η, Λ̃|O) through a

Fortran code which implements the emcee sampler (Foreman-Mackey et al., 2013)
with stretch move. Emcee is, infact, the implementation of the affine invariant
MCMC sampler of Goodman & Weare (2010).

For our calculations the number of walkers ran in the sampling has been fixed to
20 while the number of walker steps to 2 · 106, of which 1 · 106 steps are discarded
as burn-in. Note that, throughout the code, the masses and tidal deformabilities
of the stars are computed from α and the stellar central pressures without directly
integrating the TOV equations (Eq. 2.20). This is achieved exploiting a set of input
files which contain the values of α and pc along with the values of the respective
equilibrium mass (m) and tidal deformability (Λ). The latter were computed in

5We generalize to the case of the kilonova emission assuming Mchirpto have been evaluated from
its GW counterpart.
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previous studies by integrating the TOV equations over a grid 4000x4000 couples
(α, pc), with α ∈ [0.7, 2] and log10(pc) ∈ [−5,−2.5]. The values of m and Λ and
the respective (α , pc) tuples are read and interpolated in the code so that at the
relations m(α, pc) and Λ(α, pc) are obtained.

The sampling procedure for each walker can be broken down into the following
steps:

1. A sample (ᾱ,p̄(1)
c ) is drawn from the priors. More specifically, α is uniformly

sampled in the range [0.7,2] while the central pressure of each star is uni-
formly sampled in the logarithmic space between6 log10 p

min
c (α) ≈ 34.78 and

log10 p
max
c (α), where pmax

c is the central pressure of the heaviest stellar config-
uration expected for a fixed EoS, i.e a fixed value of α .

2. The mass of the first star is computed exploiting the interpolated relations
m(α, pc), i.e. m1 = m(ᾱ, p̄(1)

c ). The mass of the second mass is then computed
from the primary mass and the chirp mass (which is provided as an input
parameter);

3. The central pressure of the second star, p̄c,(2) is found through a Newton-
Rhapson method algorithm as the zero of the function: f = m(ᾱ, pc) - m2.

4. The star tidal deformabilities are computed exploiting the interpolated relation
Λ(α, pc), i.e. Λ1 = Λ(ᾱ, p̄(1)

c ) and Λ2 = Λ(ᾱ, p̄(2)
c ) ;

5. Having m1,m2,Λ1 and Λ2, the symmetric mass ratio and the binary tidal
deformability are computed as in Eq. (3.7) and Eq. (3.5);

6. The log-likelihood is computed as in Eq. (4.33). Note that the joint posterior
P (η, Λ̃|O) is obtained before the sampling starts by interpolating the discrete
sampled posteriors of Λ̃ and η provided as input files to the code;

7. The log-posterior of (ᾱ,p̄(1)
c ) is evaluated from the logarithmic expression of

Eq. (4.30), then the position of the walker is updated through the emcee
sampler with a stretch move (see Section 4.4).

Addendum: computing the tidal deformability. In the following we briefly
review the structure of a code in Fortran obtained by exploiting some of the functions
used for the MCMC sampling procedure described in 4.5.2 which allows us to compute
the tidal deformability of a NS, Λ, knowing its mass and α . This code will be used
to produce mock GW and kilonova signals in 5.1.2 and in 5.2.3. In particular the
code:

1. Computes the star central pressures through a Newton-Rhapson method
applied to the function f = m(α, pc,(i)) - mi, where i = 1, 2 is the star index
and α , m1 and m2 are given as input parameters;

2. Computes the tidal deformabilities using the interpolated relation Λ(α, pc).

6Note that pc here is expressed in dyne/cm2.
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Chapter 5

Multimessenger analysis of
neutron star mergers

In this Chapter we shall assess the capability of multimessenger observations of
NS-NS binaries to constrain the microphysical parameters underlying the neutron star
EoS. More specifically, we will focus on the gravitational wave and electromagnetic
signatures of NS-NS mergers. However, GWs and photons represent only a subset
of the different astrophysical emissions known. The complete list of messengers is
composed of:

• neutrinos (ν, ν̄)

• photons (γ)

• gravitational waves (GW)

• cosmic rays (CR)

The branch of physics that studies astrophysical objects by combining informa-
tion carried by different messengers is called Multimessenger Astrophysics. The joint
analysis of these messengers is extremely instructive since the information carried by
any one of them is qualitatively different, as well as complementary to each other,
allowing for a better characterization of the source properties.

At the end of the Chapter we will exploit this approach building a numerical
pipeline which combines the data coming from the inspiral emission of NS-NS coales-
cences with the one associated to the kilonova. The ultimate goal of such framework
is to produce the posterior distribution of the amplitude of three-nucleon repulsive
interactions within the stellar cores, which largely determines the stiffness of NS EoS.

The Chapter is structured as follows: in Section 5.1 we will present the analysis
conducted on mock inspiral signals modeled on the properties of GW170817 and
GW190425, in Section 5.2 we will follow a similar approach, inspired by the work of
Breschi et al. (2021), studying the data of the kilonova AT2017gfo and, finally in
Section 5.3 we will combine the analysis of the real strain data of GW170817 with the
one of AT2017gfo in order to obtain a multimessenger measurement of the amplitude
of three-nucleon repulsive interactions, also exploring possible generalization to mock
signals of the two type of emissions considered.
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5.1 GW170817 and GW190425
The discovery of GW170817 represented the first GW detection of a binary

neutron star system, also marking the beginning of the multimessenger era. The
event was, indeed, followed by the observation of two different electromagnetic
counterparts. The first one, detected by the Fermi and INTEGRAL gamma-ray
telescopes approximately 1.7s after the merger, was a short gamma-ray burst (GRB),
thereafter called GRB170817A (Abbott et al., 2017b). The second signal was an
unprecedented electromagnetic transient discovered ∼ 11h after the merger, the
kilonova AT2017gfo (Abbott et al., 2017a).

The second NS-NS coalescence, GW190425, was somewhat a more unlucky
detection. At the time of the observation only LIGO Livingston and Virgo were
operational. The signal had an SNR (Eq. 3.9) of 12.9 in LIGO Livingston and a
SNR of only 2.5 in Virgo (Abbott et al., 2020), below the noise threshold, making
GW190425 arguably a single-detector event. Since GW localization relies predomi-
nantly on measuring the time delay between different observatories, the sky map for
this event was very wide (∼ 8300 deg2). For comparison, GW170817 had a SNR of
18.8, 26.4, and 2.0 respectively for LIGO Livingston, LIGO Hanford and Virgo and
its reconstructed sky localization from the three GW detections spanned an area of
∼ 28 deg2 (Abbott et al., 2017a). Furthermore, the NS-NS system that produced
GW190425 was approximately 4 times1 more distant from Earth than the one that
originated GW170817 making it far less loud in the interferometers. Finally, no
matching electromagnetic counterpart was observed in coincidence with the GW
trigger.

In the following we will first study mock signals of the two events exploiting
Fortran and Python codes tailored to recover the injected value of the three-body
nucleon amplitude α in order to assess the accuracy to which this parameter can
be retrieved by current GW detectors at design sensitivity and by third generation
interferometers. As discussed above, to this aim we will inject signals with the same
properties of GW170817 and GW190425, and specific values of α (i.e. specific EoS)
within the noise spectral densities of LIGO/Virgo and ET. Then, in Section 5.3 we
will conduct a similar study on α, focusing on real data, i.e. on the observed strain of
GW170817. We will exploit a pre-existing analysis developed in Maselli et al. (2021)
and Sabatucci et al. (2022) for the GW inspiral signal, and combine it with the
original results carried out in this work exploiting the kilonova data of AT2017gfo
(Section 5.2), discussing the properties of the multimessenger distribution of α.

5.1.1 Code overview
The goal of our analysis is to retrieve the joint posterior distribution of the binary

dimensionless tidal deformability, Λ̃ , and of symmetric mass ratio, η . Both of them
depend on the stellar EoS and will be used afterwords to obtain the distribution of
the amplitude that quantifies the strength of the three-nucleon repulsive interactions,
α , which is a free parameter in the nuclear model described in 2.3.2. To perform
the parameter estimation analysis on the mock signals, a numerical pipeline was
defined and implemented following the scheme in Fig. 5.1. The pipeline exploits
both pre-existing codes in Fortran for the implementation of Monte Carlo Markov
Chains (see Section 4.5 for more details), as well as newly written Python codes

1The distance constrain for GW190425 is 159+69
−71 Mpc (Abbott et al., 2020) while for GW170817

is 40+8
−14 Mpc (Abbott et al., 2017a)
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Figure 5.1. Flow chart of the numerical pipeline defined to hierarchically infer the amplitude
of three-nucleon forces from the simulated detection of inspiral GW signals emitted by
NS-NS mergers.

which perform the injection and analysis of the mock GW signals in bilby . The
latter is a Python library used in GW astronomy to perform data analysis and
inference following a Bayesian approach (Ashton et al., 2019).

As shown in the blue boxes in Fig. 5.1, the pipeline starts by fixing the value
of α and extracting the binary fundamental parameters from LIGO-Virgo Gravita-
tional Wave Open Science Center (GWOSC) event catalogue (available at this link).
These parameters will constitute the set of injection parameters of the mock GW
signal, i.e the quantities defining the waveform. The injection parameters can be
divided into two categories:

• intrinsic parameters: the properties of the NS-NS binary which are independent
on the observer position. They are the stellar masses (m1, m2), dimensionless
spins (χ1, χ2) and tidal deformabilities (Λ1, Λ2).

• extrinsic parameters: the quantities that refer to the position of the source in
the sky with respect to the observer, the time at which the event took place and
the response function of the detectors. They are the source luminosity distance
(dL), its angular coordinates (ra and dec), the inclination of the binary (θjn)
with respect to the line of sight, the geocentric time of the coalescence, the
polarization angle (ψ) and the phase of the GW at a reference frequency2 of
50 Hz (ϕ).

2Indeed, some parameters of the binary are defined in bilby at a reference frequency which must
be specified beforehand [Ashton et al. (2019); Romero-Shaw et al. (2020)] and which is generally
fixed to 50 Hz.

https://www.gw-openscience.org/eventapi/html/allevents/


5.1 GW170817 and GW190425 58

The values of the injection parameters for the two events are presented in Table 5.2
and Table 5.3.

GW170817 injection parameters. In the case of GW170817, the source angular
position was fixed to be the one of the identified host galaxy NGC4993 (Abbott
et al., 2017a), while the masses, spins, luminosity distance and inclination angle
were retrieved3 from Table II in Abbott et al. (2019). The value of the phase was
arbitrarily fixed to 1.3 rad. Indeed, ϕ injected value is irrelevant for our analysis
as we choose to marginalize over this parameter. Since it was not possible to find
the credible intervals of ψ in literature, its value was fixed by matching the SNR
obtained by a benchmark injection of GW170817 in bilby (see Appendix A), to
the actual SNR reported in Abbott et al. (2019). Note that the PSDs used for the
benchmark injection were the one of LIGO-Virgo interferometers in the O2 run
available at link. For a polarization angle of ψ = 2.659 rad, the SNR of the mock
signal in the interferometers is of 19.5 for LIGO Hanford, 26.1 for LIGO Livingston
and 3 for Virgo, very close to the values of SNRs (18.8, 26.4, 2.0) determined by the
LIGO-Virgo collaboration itself. To correct for the small deviation from the target
SNRs, the luminosity distance of the event has been rescaled as:

d′
L = dL/R , (5.1)

where R is the ratio between the total SNR4 of the the real detection (32.4) and the
total SNR of the benchmark simulation (32.78). By applying this rescaling we have,
indeed, exploited the fact that the total SNR approximately scales as the inverse of
the luminosity distance.

GW190425 injection parameters. In the case of GW190425, the values of each
injected parameter corresponded to the medians of the low-spin posteriors available
for the event on Zenodo (link).

Tidal deformabilities. For both events the injected values of the NSs tidal
deformabilities Λ1 and Λ2 were computed in the Fortran code described in 4.5.2
fixing the stellar masses to correspond to their injected values, and the microphysical
parameter α to be either 1 or 1.5 (yellow box on the top-right side of Fig. 5.1). Note
that as α increases, the EoS becomes stiffer (see Fig. 2.5). The two values of α
have been chosen to span a large range of stellar compactness, which is the main
quantity characterizing the tidal deformabilities, and to study how it affects the
multimessenger analysis we performed.

Waveform model. The injection parameters represent the input parameters of
our waveform approximant, i.e. the method that produces a simulated GW signal
from the properties of the binary. Different approximants are available depending
on the physical effects taken into account (e.g. spin precession, tidal effects). The
approximant we have used is Taylor F2 which determine the Fourier transform of
the strain with the stationary phase approximation. To produce the mock signals,
other additional parameters are needed: the signal minimum frequency, the duration
and the sampling frequency. The former was fixed to 30 Hz while the duration of

3Note that the masses of the stars have been taken as the mean of the credible intervals obtained
in Abbott et al. (2019), while the injected spins have beem fixed to zero.

4The total SNR of the interferometer network is computed as the root sum square of the
individual interferometers’ SNRs.

https://dcc.ligo.org/LIGO-P1900011/public
https://zenodo.org/record/5117703#.YuPg3NJBzWs


5.1 GW170817 and GW190425 59

the mock signal was fixed to be 64s, of which 2s past the geocentric time (i.e. after
the merger). Finally, the sampling frequency was chosen to be equal to 4098 Hz.

Detectors. Next, the mock signals of GW170817 and GW190425 were injected in
either one of two different detector configurations, always assuming no instrumental
noise5. The first interferometer configuration studied consisted of a network of LIGO
Hanford, LIGO Livingston and Virgo (HLV network) with expected sensitivity curves
for the O4 run, which is planned to start in March 2023. The second configuration
consisted only of the Einstein Telescope (ET), a 3rd-generation interferometer to
be online by mid-2030s. Note that the minimum frequency detectable by the two
configurations was fixed to correspond to the minimum frequency of the mock signal.
The amplitude spectral density (ASD)6 curves of these interferometers are avalaible,
respectively, at this link (HLV network) and this link (ET), and are displayed in Fig.
5.2.

Figure 5.2. Expected power spectral densities for Advanced LIGO and Advanced Virgo
(O4 run) and the Einstein Telescope.

Parameter estimation in bilby . After the injection, a subset of the binary
parameter posteriors are recovered in bilby using dynesty (Speagle, 2020), a
dynamic nested sampling algorithm, setting the number of live points to 1000. As
mentioned in Chapter 4, in a Bayesian framework the posterior of a parameter is
evaluated as the ratio between the data’s likelihood, given that parameter, and its
prior. Therefore, to obtain the posteriors of the binary parameters one needs to
first define the likelihood and prior functions. The likelihood function is evaluated
using the GravitationalWaveTransient class, whose documentation is available
at this link. The priors of the inferred binary parameters were all chosen to be
uniform between physically reasonable bounds (see Table 5.1) with the exception
of the angular parameters (ra and dec), the inclination of the binary (θjn) and the
polarization angle (ψ). The latter were fixed to their injected values, assuming

5This assumption, although not being truthful to real GW detections, significantly reduces the
computational time related to the parameter estimation.

6The ASD is computed as the square-root of the power spectral density (PSD).

https://dcc.ligo.org/LIGO-T2000012/public
http://www.et-gw.eu/index.php/etsensitivities
https://lscsoft.docs.ligo.org/bilby/api/bilby.gw.likelihood.base.GravitationalWaveTransient.html#bilby.gw.likelihood.base.GravitationalWaveTransient
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for both GW events to have been able to pinpoint the host galaxy thanks to an
electromagnetic counterpart. Though this is reasonable for GW170817, the same
assumption is less accurate for GW190425. Nevertheless, this assumption significantly
reduces the parameter space allowing to cut down the sampling time. Note also that
the stellar tidal deformabilities Λ1 and Λ2 were constrained to belong to the interval
(0, 3000).

The binary parameters retrieved from the injected signal were the chirp mass in
the detector-frame7 (Mchirp), the stars dimensionless spins (χ1 and χ2), the symmet-
ric mass ratio (η), the tidal deformability of the binary (Λ̃) and the tidal parameter
(δΛ̃). To further decrease the computational time we decided to marginalize over
the luminosity distance, the time and the phase.

Prior bounds Units
η (0.18, 0.3) -

Mchirp (1.0, 1.6) M⊙
Λ̃ (0, 3000) -
δΛ̃ (-1000, 1000) -
χ1 (-0.05, 0.05) -
χ2 (-0.05, 0.05) -
dL (20,400)* Mpc

Table 5.1. Uniform prior bounds for the sampled parameters. The bounds taken for the
luminosity distance are marked with * because the prior function is uniform in comoving
volume and source frame time (documentation at the link).

Recovering α posterior. Our next step was to extract the samples for Λ̃ and η
from the output .json file in which bilby stores all the sampled posteriors. These
samples constitute the input files of the Fortran code described in 4.5.2 which
implements MCMC sampling on the Λ̃ and η joined posterior to compute the
posterior of the parameter α .

The resulting posteriors obtained for α for different injection values, different
events and detectors are all analysed and discussed in 5.1.3.

Goal of the analysis. The goal of the analysis was to compare the performance
of current (HLV network) and next-generation (ET) interferometers in recovering
the properties of nuclear matter in the NS from the different GW signals. We
were particularly interested in determining the improvements introduced by the
ET interferometer which is expected to be significantly more sensitive than HLV
interferometers (see Fig. 5.2). Although in this work we are limiting ourselves to
the study of the inspiral signal, ET is also expected be more sensitive to frequencies
between 103 − 104 Hz, and, therefore, to potentially capture the merger and post-
merger GW signals of NS-NS coalescences, opening a window to the study of the last
evolutionary phases of the binary and allowing for a better characterization of the
tidal effects which become significantly stronger in the late stages of the coalescence
(Chatziioannou, 2020).

7Ground-based GW detectors actually measure a redshifted (detector-frame) chirp mass which
is linked to the real binary chirp mass by the relation Mdet

chirp = (1 + z)Mchirp. In the following we
will simply refer to the detector-frame chirp mass as Mchirp.

https://lscsoft.docs.ligo.org/bilby/api/bilby.gw.prior.UniformSourceFrame.html
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5.1.2 Mock signals parameter estimation
In the following we will describe the results obtained for the parameter estimation

analysis conducted on the mock signals of GW170817 and GW190425. For each
source we first present the outcome of the Bayesian GW analysis which provides the
posterior distributions of the NS-NS binary parameters, focusing afterward on the
constraints that can be inferred on the three-nucleon amplitude α.

GW170817 mock signal. The posteriors obtained for GW170817 mock signals
are shown in the corner plots in Figs. 5.3 - 5.4 for α =1 and in Figs. 5.5 - 5.6 for α
=1.5. Diagonal (off-diagonal) panels show the marginalised (joint 2D) distributions.
Note that we also show the samples drawn for the additional parameter tj , which
refers to a time shift used to produce the time marginalization (Romero-Shaw et al.,
2020). The values of the mock signal injected parameters are listed in Tables 5.2 -
5.3 while the reconstructed medians and 68% credible intervals for a subset of the
sampled posteriors are shown in Table 5.5 and Table 5.6. As discussed in 2.3.2, since
larger values of α correspond to stiffer EoSs (see Figure 2.5), the injected values
of the stellar tidal deformabilities are larger for α = 1.5 than α =1 (see Table 5.4).
However, no significant difference was observed in the performance of the parameter
estimation between the two cases.

The SNR of the GW170817 mock signals in LIGO Hanford, LIGO Livingston,
LIGO Virgo and ET were, respectively, of 60.58, 50.95, 13.36 and 430.9.

Let us first describe the results obtained for the injections in the HLV network.
Among the binary parameters, the chirp mass results to be the one which was the
best measured with an uncertainty ∼ 0.005 % at 68% credible interval. This is
expected as the chirp mass is the leading quantity which characterizes the evolution
of the GW phase (see Section 3.2). On the other hand, the dimensionless spins of the
two stars were recovered from the signal with noticeably larger uncertanties being
very degenerate between one another. Indeed, the spins do not actually enter the
PN expansion individually but as a mass-weighted combination (Cutler & Flanagan,
1994) called effective spin8

χeff = m1χ1z +m2χ2z

m1 +m2
, (5.3)

where χ1z and χ2z are the spins projections on the axis of the binary angular
momentum. This did not represent an issue for our analyses because we were
primarily interested in recovering the posteriors of the binary tidal deformability
and symmetric mass ratio.

The symmetric mass ratio was the second best measured parameter, with an
accuracy of ∼ 2% at 68 % credible interval (Table 5.5). It presents a partially
degenerate behaviour with the spins and the chirp mass since all of them contribute
to the 1.5 PN correction to the phase (Cutler & Flanagan, 1994).

As mentioned in 3.2.1, matter effects enter the PN expansion for NS-NS mergers
at 5PN (Λ̃ contribute) and 6PN (δΛ̃ contribute). Therefore, the tidal parameters
represented the most difficult to be recovered from the signal among the binary

8Usually χeff is sampled along with a combination of the spin components perpendicular to the
direction of the angular momentum which accounts for precession effects of the binary (Hotokezaka
et al., 2013):

χp = max
(

χ⊥,1,
3 + 4q

4 + 3q
qχ⊥,2

)
. (5.2)
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parameters. For the mock injections in the HLV network Λ̃ was constrained with an
uncertainty of ∼ 10% at 68 % level while δΛ̃ ’s final posterior was mainly dominated
by its prior.

Conversely, the injections in ET showed a noticeable improvement in the param-
eter estimation of the chirp mass and the binary tidal deformability. The constraints
on Mchirp improved of a factor of ∼ 2 when the mock signal was detected by ET
(Table 5.5) although still presenting the degeneracy with the spins and the symmetric
mass ratio. The measurement of the tidal deformability Λ̃ also improved of a factor
∼2-3 assuming the signal was observed by ET. Such enhancement is crucial to
accurately recover the the parameter α , as we will discuss in Sec. 5.1.3.

Similarly to HLV, however, ET failed to set meaningful bounds on δΛ̃. This
results is expected given δΛ̃ provides a subdominant contribution to the GW phase,
entering within its PN expansion as a 6PN correction.
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Figure 5.3. Corner plot showing the posterior distributions of the sampled binary parame-
ters for GW170817 mock signal observed by the HLV network. We assume α = 1 for
the stellar EOS. Solid orange lines correspond to the injected values.
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Figure 5.4. Same as Fig. 5.3 but for mock signals observed by the Einstein Telescope.
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Figure 5.5. Corner plot showing the posterior distributions of the sampled binary parame-
ters for GW170817 mock signal observed by the HLV network. We assume α = 1.5 for
the stellar EOS. Solid orange lines correspond to the injected values.
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Figure 5.6. Same as Fig. 5.5 but for mock signals observed by the Einstein Telescope.

GW190425 mock signal. The corner plots obtained for mock signals of the
second event GW190425 are shown in Fig. 5.7 and 5.8 for α = 1, and in Fig. 5.9
and 5.10 for α = 1.5. The values of the injected parameters are listed in Tables
5.2 - 5.3 while medians and 68% credible interval of the inferred distributions are
summarised in Tables 5.5 and Table 5.6. The degeneracies between the binary
parameters described in the last paragraph also apply to the case of GW190825.
However, both numerical values and corner plots show that the measurements of
the binary parameters for GW190425 are less accurate than those obtained for
GW170817. This is somehow expected as the injected signals are significantly less
loud in this case due to the source luminosity distance, which is four times larger
than GW170817.
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The SNR of the signals in LIGO Hanford, LIGO Livingston, LIGO Virgo and ET
were, respectively, of 7.73, 9.08, 5.28 and 125.3.

When the mock signals are injected in the HLV network the uncertainty on the
chirp mass is ∼ 5 times larger than the one estimated for GW170817, while the
binary tidal deformability and δΛ̃ are basically unconstrained.

This picture changes dramatically with the introduction of ET. Indeed, the
uncertainty on the chirp mass decreases of a factor 5, from 0.002 % to 0.0004 %
at 68% credible interval while the uncertainty on Λ̃ decreases up to the 17 % at
68 % credible interval for both α = 1 and α = 1.5 injection (see Table 5.5 and
5.6). In 5.1.3 we will see how these improvements affect the estimate of α . As
for GW170817’s case, δΛ̃ is still highly degenerate with most of the other binary
parameters, and leads to the loosest constraints overall.
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Figure 5.7. Corner plot showing the posterior distributions of the sampled binary parame-
ters for GW190425 mock signal observed by the HLV network. We assume α = 1 for
the stellar EOS. Solid orange lines correspond to the injected values.



5.1 GW170817 and GW190425 69

Figure 5.8. Same as Fig. 5.7 but for mock signals observed by the Einstein Telescope.
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Figure 5.9. Corner plot showing the posterior distributions of the sampled binary parame-
ters for GW190425 mock signal observed by the HLV network. We assume α = 1.5 for
the stellar EOS. Solid orange lines correspond to the injected values.
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Figure 5.10. Same as Fig. 5.9 but for mock signals observed by the Einstein Telescope.

m1,s [M⊙] m2,s [M⊙] χ1 χ2 dL [Mpc]
GW170817 1.48 1.26 0.00 0.00 40
GW190425 1.75 1.56 0.012 0.011 159.5

Table 5.2. Injected values of the mass of the stars in the source reference frame (m1,s,m2,s),
the dimensionless spins (χ1, χ2) and the luminosity distance of the source (dL).
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θjn [rad] ra [rad] dec [rad] geoc. time ψ [rad] ϕ [rad]
GW170817 2.56 3.445 -0.4082 1187008882.43 2.659 1.300
GW190425 1.041 3.681 -0.08228 1240215503.027 1.601 3.106

Table 5.3. Injected values for the angular parameters, the geocentric time of the two
events, the polarization angle (ψ) and the phase of the GW at 50 Hz (ϕ). Note that the
angular parameters are the inclination of the binary (θjn), the right ascension (ra) and
declination (dec) of the source in the sky.

α = 1 Λ1 Λ2 Λ̃ δΛ̃ η

GW170817 183 505 309 37.28 0.248
GW190425 54 128 85 9.73 0.249
α = 1.5 Λ1 Λ2 Λ̃ δΛ̃ η

GW170817 321 854 530 60.14 0.248
GW190425 103 229 156 15.88 0.249

Table 5.4. Values of the stars tidal deformabilities (Λ1 and Λ2), the tidal parameters (Λ̃
and δΛ̃ ) and the symmetric mass ratio (η ) for each injection. Note that Λ1 and Λ2
were computed numerically in Fortran from m1 and m2 having fixed α to either 1 or 1.5.

α = 1 interf. Mchirp [M⊙] η Λ̃ δΛ̃ SNR

GW17- HLV 1.19887+0.00006
−0.00005 0.245+0.003

−0.005 294+33
−34 11+84

−80 80.3
GW17- ET 1.19885+0.00003

−0.00002 0.247+0.002
−0.003 299+11

−14 6+85
−81 430.9

GW19- HLV 1.4885+0.0003
−0.0003 0.247+0.002

−0.004 379+368
−216 8+111

−101 13.0
GW19- ET 1.48844+0.00006

−0.00005 0.246+0.002
−0.004 81+14

−14 3+22
−22 125.3

Table 5.5. 68% credible intervals around the median values obtained for the chirp mass in
the detector reference frame (Mchirp) in solar masses, the symmetric mass ratio (η )
and the tidal paramaters (Λ̃ and δΛ̃). The last column shows the total SNR of the event
in the interferometers. The medians refer to different events and/or detectors. Note that
GW17- and GW19- respectively stand for GW170817 and GW190425.
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α = 1.5 interf. Mchirp [M⊙] η Λ̃ δΛ̃ SNR

GW17- HLV 1.19887+0.00006
−0.00005 0.245+0.003

−0.005 509+37
−40 20+141

−141 80.3
GW17- ET 1.19885+0.00003

−0.00002 0.246+0.002
−0.003 516+15

−20 0.4+153.9
−134.1 430.9

GW19- HLV 1.4885+0.0003
−0.0003 0.247+0.002

−0.004 397+376
−216 7+114

−108 13.0
GW19- ET 1.48844+0.00006

−0.00005 0.246+0.002
−0.003 149+15

−14 7+40
−43 125.3

Table 5.6. 68% credible intervals around the median values obtained for the chirp mass in
the detector reference frame (Mchirp,d) in solar masses, the symmetric mass ratio (η )
and the tidal paramaters (Λ̃ and δΛ̃). The last column shows the total SNR of the event
in the interferometers. The medians refer to different events and/or detectors. Note that
GW17- and GW19- respectively stand for GW170817 and GW190425.

5.1.3 Retrieving α

Having obtained the sampled posteriors of the binary parameters we move to
recovering the distribution of α . This is done by following the procedure presented
in Section 4.5 in which the posterior distribution of α is obtained from the joint
distribution of the binary tidal deformability Λ̃ and the symmetric mass ratio η .
The latter are extracted from bilby output .json file which contains the samples of
the various parameters posteriors.

The inferred marginal posteriors are shown in Figs. 5.11 and 5.12 for the HLV
network and ET, respectively. Furthermore, in Fig. 5.13 and in Fig. 5.14 we show
the 2D contour plots of the posterior distributions of α and log10 pc, for the injections
of GW170817 and GW190425 mock signals. Note that the (logarithm of the) central
pressure pc is expressed in dyne/cm2. It is interesting to notice that the posteriors
of pc present a double peak in correspondence of the injected central pressures of
the primary NS (red star) and secondary star (orange star). This is related to the
fact that we are sampling Λ̃ alongside the symmetric mass ratio η which, conversely
to the mass ratio q, is completely symmetric under an exchange of the two stellar
masses.

As expected from the results obtained in 5.1.2, the detections of GW170817
put, overall, the most accurate constraints on the injected value of α . More
specifically, the values of α recovered from the injections in the HLV network present
an uncertainty at the 68% credible interval of ∼ 10% which decreases up to a
∼ 3-4% when injected in ET (Table 5.7). Even more interestingly, while injections
of GW190824 in the HLV network fail to accurately constrain the value of α , when
the mock signals are injected in ET we are able to recover α with an uncertainty of
∼ 10% at 68% credible interval.

These results, along with the ones obtained in 5.1.2, highlight the significant
impact of third generation interferometers in constraining finite-size effects such
as tidal corrections to the GW phase, and their accuracy in recovering nuclear
properties of matter inside NSs linked to the still uncertain NS EoS.
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(a) (b)

Figure 5.11. Posterior distributions retrieved for α. Note that Figure 5.11a and Figure
5.11b refer, respectively, to the injection of GW170817 and GW190425 signals in the
HLV network.

(a) (b)

Figure 5.12. Same as Fig. 5.11 but for signals injected in the Einstein Telescope noise
stream.



5.1 GW170817 and GW190425 75

(a) (b)

(c) (d)

Figure 5.13. Contour plots of the 2D posteriors of α and pc for different observations
and/or detectors assuming an injected value α = 1. The top row panels present the
2D distributions obtained for injection of GW170817 in the HLV network (left panel)
and in ET (right panel) while the bottom row panels the injections of GW190425 in the
same order. The red and orange stars denote, respectively the injected values of α and
log10 pc for the primary and the secondary star in the binary.
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(a) (b)

(c) (d)

Figure 5.14. Same as Fig. 5.13 but assuming NS binaries with α = 1.5.
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α = 1 interf. median

GW170817 HLV 0.98+0.09
−0.11

ET 0.98+0.03
−0.04

GW190425 HLV -
ET 0.97+0.12

−0.12

α = 1.5 interf. median

GW170817 HLV 1.47+0.07
−0.08

ET 1.47+0.03
−0.04

GW190425 HLV -
ET 1.47+0.10

−0.11

Table 5.7. 68 % credible intervals around the medians obtained from the α posteriors in
Fig. 5.11 and Fig. 5.12.

5.2 AT2017gfo
As previously mentioned, GW170817 represented a unique event for multimes-

senger astronomy since it was followed not only by a short-gamma ray burst but
also by a quasi-isotropic electromagnetic transient which was never been observed
at the time, a kilonova (AT2017gfo). This transient was firstly detected in the
optical band by the Swope telescope on August 17 at 23:33 UTC, about 10.87 h
after the GW trigger (Abbott et al., 2017a). Over the course of a couple of days,
the kilonova showed a rapid dimming of its initial UV–blue emission and an unusual
brightening of the near-infrared emission. After roughly a week, the redder optical
and near-infrared bands began to fade as well (Abbott et al., 2017a). In Fig. 5.15 is
presented the evolution of the kilonova luminosity over a period of 30 days in the
UV-optical-infrared (UVOIR) bands.

As seen in Section 3.3, the kilonova is powered by the radioactive decay of
neutron rich matter expelled during and after the merger by a variety of mechanisms
which produce ejecta with different masses, velocities and compositions. These
fundamental properties of the ejecta are, ultimately, dependent on the properties of
the progenitor NSs such as their mass, tidal deformability and EoS. For this reason,
many studies are now conducted to assess the relation between kilonovae features
and the binary properties and implement efficient inference strategies to retrieve the
latter from the signal and combine it with the information coming from GWs (i.g.
Radice et al. (2018), Raaijmakers et al. (2021), Pang et al. (2021)).

In this Section we will follow the analysis of Breschi et al. (2021) and derive the
posterior distribution of the binary tidal deformability (Λ̃ ) and mass ratio (q) from
the distribution of the dynamical ejecta mass (mD

ej ) and velocity (vD
ej ), the latter

being inferred in Breschi et al. (2021) by fitting the photometric data of AT2017gfo
with an anysotropic multicomponent ejecta model. Next, following the procedure
described in Section 4.5, we will obtain the posterior distribution of α from the joint
posterior of Λ̃ and η .
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The numerical pipeline used to perform the analysis is described in 5.2.1. The
former is first applied to the case of AT2017gfo in 5.2.2, then a possible generalization
to mock kilonova signals is explored in 5.2.3.

Figure 5.15. UVOIR luminosity time-evoltuion of AT2017gfo presented in Villar et al.
(2017). Solid lines represent the predictions of the highest likelihood three-component
model for each filter, while shaded regions represent the 1σ uncertainty ranges.

5.2.1 Code overview
The structure of the numerical pipeline implemented to estimate α from the

photometric data of AT2017gfo is displayed in Fig. 5.17.

The starting point of the pipeline (blue box in Fig. 5.17) is represented by the
mD

ej and vD
ej posterior distributions obtained by Breschi et al. (2021) from the fit of

AT2017gfo photometric data with an anisotropic 3-component model9 (Fig. 5.16).
The components considered by Breschi et al. (2021) in their model are a dynamical
ejecta, a viscous ejecta and neutrino wind ejecta which we briefly reviewed in 3.3.3.
For simplicity, we will assume mD

ej and vD
ej posteriors to be normal distributions

around the means reported in Table 3 of Breschi et al. (2021) with standard deviations
obtained from the mean of 90 % credible intervals also reported in Table 3.

Resampling. We follow the resampling procedure described in Breschi et al. (2021)
(green boxes in Fig. 5.17): first a tuple (q, Λ̃) is drawn from their priors, secondly the
tuple is mapped into (mej

D , v
ej
D ) exploiting the NR fitted formula derived by Nedora

et al. (2021):

P2(q, Λ̃) = b0 + b1q + b2Λ̃ + b3q
2 + b4qΛ̃ + b5Λ̃2 , (5.4)

9In the first part of the paper the authors prove that this model provides the larger evidence
among the others tested which either presented less components and/or an isotropic geometry.
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Figure 5.16. Profiles of the various ejecta models analysed in Breschi et al. (2021) from an
azimuthal perspective and for a fixed moment of time.

with the coefficients of the polynomial being listed in Table 5.8. Lastly the log-
posterior of (q, Λ̃) is evaluated as:

log P(q, Λ̃|dAT gfo) = 1
2

[
(mD

ej − m̃D
ej)2

σ2
m

+
(vD

ej − ṽD
ej)2

σ2
v

+ a2
1
σ2

a

+ a2
2
σ2

a

]
+ C . (5.5)

Note that m̃D
ej , ṽD

ej and σm, σv in Eq. (5.5) are the means and standard deviations
of the dynamical ejecta mass and velocity posterior distributions.

Calibration parameters. To take into account the non-negligible uncertainties
related to the NR fit, two calibration factors are introduced (Breschi et al., 2021)
such that:

log10m
D
ej = (1 + a1) log10m

D
ej,fit ; vD

ej = (1 + a2)vD
ej,fit . (5.6)

The calibration parameters are sampled along with the other parameters assuming
they are described by gaussian priors with vanishing means and standard deviations
σa = 0.2 (relative uncertainties of the NR fit). These priors also contribute to the
final posterior of (q, Λ̃) (see Eq. (5.5)).

Sampler. The sampling of the parameter space was performed in Python using
the emcee sampler (Foreman-Mackey et al., 2013). The number of walkers was fixed
to 50 while the number of steps-per-walker has been fixed to be 800000 steps, 200000
of which are discarded as burn-in.

Obtaining α posterior. At the end of the sampling procedure we obtain the
posterior samples of q, Λ̃ , a1 and a2. From the mass ratio samples we can get the
samples of the symmetric mass ratio η exploiting the relation:

η = q

(1 + q)2 . (5.7)
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Next, having the posterior samples of Λ̃ and η , we can follow the same procedure
described in 4.5 and produce the posterior distribution of the 3-nucleon repulsive
strength, α .

Goal of the analysis. In this Section our goal was to explore the constraints posed
by the kilonova emission on the nuclear properties of NSs and define a generalization
of the pipeline defined for the injection campaign in Section 5.1. Furthermore,
this analysis sets the stage for the multimessenger data-analysis strategy we have
developed in Section 5.3 where the results obtained from the inspiral signals are
combined with the ones obtained from the kilonova emission.

Figure 5.17. Flow chart of the numerical pipeline defined to hierarchically infer the
amplitude of 3-nucleon forces from from the photometric data of AT2017gfo.

log10m
D
ej vD

ej [c]
b0 1.04 0.720
b1 -3.31 -0.204
b2 -6.89·10−3 -1.20·10−3

b3 0.4194 -4.05·10−2

b4 5.09·10−3 3.92·10−4

b5 5.83·10−7 5.20·10−7

Table 5.8. Coefficients of the polynomial fit in Eq. (5.4) (Nedora et al., 2021).
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5.2.2 Real data
We first repeated the analysis in Breschi et al. (2021) to assess the effect of the

approximations introduced and produce the posterior of α . Similarly to Breschi et al.
(2021) the obtained posterior for Λ̃ is characterized by two modes approximately at
300 and 1000 (see Fig. 5.18a). Note that the presence of these double peaks is to be
attributed to the quadratic nature of the fitted formula of Nedora et al. (2021). The
position of the modes was evaluated by fitting the posterior samples of Λ̃ in Python
as a sum of two gaussian distributions. The values obtained for the modes and the
standard deviations are respectively Λ̃1 = 299+152

−152 and Λ̃2 = 996+124
−124. The median of

the distribution is Λ̃ = 931+170
−615 (68 % credible interval), compatible with the result

obtained by Breschi et al. (2021) of Λ̃ = 900+310
−780. Furthermore, the mass ratio is

constrained to be < 1.56 at the 90% credible interval similar to Breschi et al. (2021)
(q < 1.54 at the 90% level), while the median of the distribution is q = 1.32+0.16

−0.20 (68
% credible interval).

(a)

(b) (c)

Figure 5.18

Figure 5.19. Posterior distributions (not normalized) of the binary tidal deformability Λ̃ ,
the mass ratio q and the symmetric mass ratio η obtained from the distributions of mD

ej

and vD
ej for the case of AT2017gfo. The samples obtained for Λ̃ can be accurately fitted

with a double gaussian (red curve in the top panel). Furthermore, the blue vertical lines
in Fig. 5.18a denote the modes of the fitted double gaussian (solid line) and the ±1σ
region (dashed).

From the mass ratio samples we obtain the samples for the symmetric mass ratio
exploiting Eq. 5.7 (Fig. 5.18c). Next, following the procedure outlined in Section 4.5,
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we get the distribution of α. The latter is displayed in Fig. 5.20. The distribution
presents a median value of α = 1.14+0.32

−0.26 (uncertainty of ∼ 30% at 68 % credible
interval). Note that our baseline model, which is obtained for α = 1 (see 2.3.2), is
compatible within the 68% credible interval with the median of the distribution. On
the other hand, more stiff scenarios (as the one explored for the mock GW analysis,
i.e. α = 1.5) result slightly outside of the 68% interval and, thus, are less probable.
As a matter of fact, the obtained distribution tends to exclude the larger values of α
, being α ≲ 1.57 at 90% level.

In Section 5.3 we will see how these results, combined to the distribution recovered
from GW170817 strain data, contribute to a multimessenger estimate of the α .

Figure 5.20. Posterior distribution of α obtained from the analysis of AT2017gfo’s
photometric data. The vertical red lines denote the position of the median (solid) and
the 68 % interval.

5.2.3 Mock data
In the following we produce a similar analysis to the one in 5.2.2 but we fix the

value of α a-priori to assess to which accuracy the parameter is retrieved. More
specifically we study the case of NS mergers with the masses and tidal deformabilities
used in Section 5.1 for GW170817 and GW190425 mock signals.

From m1,m2,Λ1,Λ2 we compute the mass ratio q and binary tidal deformability Λ̃
and, subsequently, the expected log10mD

ej and vD
ej exploiting Eq. (5.4), i.e. assuming

the mock NS-NS mergers to have produced a kilonova emission. In this sense, the
values obtained for mD

ej = 10log10 mD
ej and vD

ej are considered to be the means of
the normal posterior distributions which would have been produced through an
hypothetical fit of the kilonovae photometric data such as in Breschi et al. (2021).
The standard deviations of the mass and velocity normal distributions are chosen to
be, respectively, the 5% and 1% of the means, roughly in the same proportion as
the medians of mD

ej and vD
ej and their uncertainties chosen in 5.2.2.

The analysis is conducted for the two events fixing either α = 1 or α = 1.5. The
resulting posteriors are displayed in Fig. 5.21 while the medians and 68% credible
intervals are presented in Table 5.9.
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(a) (b)

Figure 5.21. Posterior distributions of α obtained for kilonova mock signals of GW170817
(Fig. 5.21a) and GW190425 (Fig. 5.21b). The histograms in yellow refer to the injections
α = 1, while the blue histograms refer to the injections α = 1.5. The vertical lines
denote the position of the medians (solid) and the 68% credible intervals (dashed)

Comparing the posteriors obtained for GW170817 and GW190425 we can observe
that there is a significant worsening in the accuracy to which we retrieve α for the
second event. This could be explained by the fact that the fitted formula in Nedora
et al. (2021) (Eq. (5.4)) was obtained studying mergers with fixed detector-frame
chirp mass Mchirp= 1.188 M⊙, i.e. the estimated chirp mass of the event GW170817,
implying that the formula might not apply to the case of GW190425. Moreover,
there is a noticeable difference between the injection α =1 and α =1.5 for the case
of GW170817 simulated kilonovae. Indeed, the posterior obtained for the α = 1.5
injection (blue histogram in Fig. 5.21a), rather then showing a peak, presents a flat
ending for α ≳ 1.4. We think this is justified by the fact that the spurious peak, i.e.
the peak that does not correspond to the injected value of Λ̃ , is very close to the
other peak for α = 1.5 (see Fig. 5.22a, right panel). Therefore, the samples from
both peaks populate similar ranges of values around the injected value (α =1.5). In
particular, the peak corresponding to larger tidal deformabilities, contribute to the
values of α around the upper bound of the prior, i.e. α =2.
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(a)

(b)

Figure 5.22. Posterior distributions (not normalized) of Λ̃ obtained for kilonova mock
signals of GW170817 (Fig. 5.22a) and GW190425 (Fig. 5.22b). The histograms on
the left side refer to the injections α = 1, while the ones on the right side refer to the
injections α = 1.5. The positions of Λ̃ ’s injected value is denoted by the orange vertical
lines while in red are shown the double gaussians fitted to the samples. Finally, the
dashed blue lines denote the ±1σ regions of the first peak of the fitted double gaussian.

α = 1 median

GW17- kN 1.09+0.24
−0.25

GW19- kN 1.26+0.44
−0.39

α = 1.5 median

GW17- kN 1.50+0.34
−0.41

GW19- kN 1.37+0.41
−0.44

Table 5.9. 68% credible intervals around the median values of the α ’s posteriors obtained
for GW170817 mock kilonova (GW17- kN) and GW190425 mock kilonova (GW19- kN).

5.3 Multimessenger analysis of GW170817 and AT2017gfo
For the final part of the analysis we combine the estimated distributions of η

and Λ̃ retrieved from the photometric data of AT2017gfo and from the GW strain
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data of GW170817 to obtain a multimessenger estimate of α . This is achieved, in
the same fashion as Section 5.2, first for real data and then for mock signals.
The code used to obtain α distribution is the one described in Section 4.5 where the
total log-likelihood expression is modified to take into account both the contribution
of the kilonova and the GW data:

log
(
L(dAT 17, dGW 17|Λ̃, η)

)
= log

(
L(dAT 17|Λ̃, η)

)
+ log

(
L(dGW 17|Λ̃, η)

)
, (5.8)

where log
(
L(dAT 17|Λ̃, η)

)
and log

(
L(dGW 17|Λ̃, η)

)
are the likelihood of the kilonova

data and the GW strain data given Λ̃ and η .

5.3.1 Real data
Note on the likelihood evaluation. The likelihood used for GW170817 strain
data correspond to the one used in Sabatucci et al. (2022). which is obtained as

L(dGW 17|Λ̃, η) = P (Λ̃, η|dGW 17)
P0(Λ̃, η)

, (5.9)

where P (Λ̃, η|dGW 17) and P0(Λ̃, η) are, respectively, the posterior and prior of Λ̃
and η reported in Abbott et al. (2019). Note that in the analyses conducted in the
previous Sections we used the posterior and the likelihood interchangeably since we
always chose Λ̃ and η priors to be uniform, i.e. they only differed up to a negligible
multiplying constant. However, in this case, since the priors used in Abbott et al.
(2019) are not uniform we need to properly re-weight the posterior to obtain the
likelihood. On the other hand, in the case of AT2017gfo following the argument on
the flat priors, we evaluate the likelihoods directly from the posteriors obtained in
5.2.2.

The resulting multimessenger distribution of α is displayed in Fig. 5.23 in pink,
superimposed on the distributions obtained for the analyses of GW170817 and
AT2017gfo data alone, respectively in blue and red. Overall, the multimessenger
distribution is dominated by the contribution of GW170817 which pushes the
posterior against the lower prior bound at α = 0.7. This behaviour, as discussed
in Sabatucci et al. (2022), tends to be in tension with the posteriors of α obtained
from NICER collaboration mass and radius pulsar data (Riley et al., 2019). In the
following we propose a possible solution based on the work of Gamba et al. (2021).

A possible way out. In Gamba et al. (2021) the authors explore the role of
waveform approximants in introducing non-negligible systematic errors on the tidal
parameters inferred from GWs. Indeed they re-analyze the strain data of GW170817
using a configuration simular to the one adopted in Romero-Shaw et al. (2020)
but imposing a frequency cutoff at fmax ∼ 1024 kHz (instead of the 2048 Hz of
Romero-Shaw et al. (2020)). This is achieved by lowering the sampling frequency
from fsamp = 4096 Hz to fsamp = 2048 Hz, with fsamp defining the Nyquist frequency
of the signal.

Interestingly, having excluded frequencies ≳ 1 kHz, the recovered posterior
for Λ̃ does not show the double peak structure of Romero-Shaw et al. (2020) but
instead the distribution shows a single peak at Λ̃ ∼ 500. Moreover, Gamba et al.
(2021) show that the evidence of the match between the data and the approximant
used, IMRPhenomPv2_NRTidal, does not improve significantly when increasing the



5.3 Multimessenger analysis of GW170817 and AT2017gfo 86

cut-off from fmax ∼ 1 kHz to fmax ∼ 2 kHz. This suggests that negligible SNR
is accumulated in the range above ∼ 1 kHz and that the double peak structure is
most likely caused by high frequency noise fluctuations rather than to a physically
motivated effects.
In the following, we have repeated the analysis in Gamba et al. (2021) using the
priors and hyperparameters specified in Tab. 5.10 and sampling the parameter
space with dynesty (1000 live points). Note that we have marginalized analytically
over the geocentric time, coalescence phase and luminosity distance. The obtained
posterior for Λ̃ is presented in Fig. 5.25. Similarly to Gamba et al. (2021), the
posterior presents a single peak around Λ̃ ∼ 500. The obtained posterior of Λ̃ is
used to perform an alternative estimate of the posterior distribution of α which is
presented in Fig. 5.24 in blue. As expected the double peak structure also disappears
for the distribution of α . Moreover, the posterior’s peak shifts to higher values
of α becoming compatible to the ones obtained in Sabatucci et al. (2022) from
NICER data. The new multimessenger distribution obtained for α (Fig. 5.23 in
pink) also results compatible, with the posteriors in Sabatucci et al. (2022) although
the contribution of the kilonova slightly moves the median towards lower α .

parameter prior

Mchirp Uniform(1.18,1.21) M⊙
q = m2/m1 ≤ 1 Uniform(0.125,1)

χ1z,2z bilby.gw.prior.AlignedSpin(0,0.05)
Λ̃ Uniform(0,5000)
δΛ̃ Uniform(-5000,5000)
dL Uniform in comoving volume, ∈ [10, 100] Mpc

cos θJN Uniform(-1,1)
right ascension 3.44616 rad

declination -0.408084 rad
hyperparameter value

fmin 25 Hz
fmax 2048 Hz

duration 128 s
trigger GPS time 1187008882.43

Table 5.10. Priors and hyperparameters used in the re-analysis of GW170817 strain data
inspired by Gamba et al. (2021). Note that Mchirp is the chirp mass in the detector-
reference frame, q is the mass ratio, χ1z,2z are the spins projections on the angular
momentum direction, Λ̃ and δΛ̃ are the tidal parameters, dL is the luminosity distance
and θJN is the inclination of the binary with respect to the line of sight.
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Figure 5.23. Posterior distribution of α obtained from GW170817 analysis (blue),
AT2017gfo analysis (red) and the multimessenger analysis (pink). The vertical lines
denote the medians (solid) and 68% intervals (dashed) of the distributions, with the
exception of the blue lines which denote the modes of the bimodal distribution obtained
for GW170817 case. The value of the modes and their standard deviations were obtained
by fitting the samples with a double gaussian.

Figure 5.24. Posterior distribution of α obtained from GW170817 re-analysis (blue),
AT2017gfo analysis (red) and the multimessenger analysis (pink) fixing a frequency
cut-off to 1024 Hz as in Gamba et al. (2021). The vertical lines denote the medians
(solid) and the 68 % credible interval (dashed) of the distributions.
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fsamp = 4096 Hz median

GW170817 1.00+0.57
−0.22

Multimessenger 0.98+0.36
−0.18

fsamp = 2048 Hz median

GW170817 1.35+0.33
−0.36

Multimessenger 1.22+0.24
−0.25

Table 5.11. 68% credible intervals around the median values recovered from α posteriors
obtained from GW170817 data and its combined study with AT2017gfo data.

Figure 5.25. Posterior distribution of Λ̃ obtained from the re-analysis of GW170817 strain
data inspired by Gamba et al. (2021). The vertical lines denote the median (solid) and
68% interval (dashed) of the distribution.

5.3.2 Mock data
In the following we will repeat the analysis in 5.3.1 using the posteriors of Λ̃

and η obtained in 5.1.2 and 5.2.3. More specifically, we will be using (i) Λ̃ and
η posteriors obtained from the injections of GW170817 mock signals in the HLV
network and (ii) Λ̃ and η posteriors obtained from the mD

ej and vD
ej distributions

related to GW170817 mock kilonovae. We are now interested in quantifying the
contributions of each of the two messengers to the final distribution of α .

The multimessenger distribution of α is presented in red in Figure 5.26 for the
injection α = 1 (Figure 5.26a) and α = 1.5 (Figure 5.26b). In blue and yellow are
presented, respectively, the posterior of α retrieved from GW170817 and AT2017gfo
mock signals individually. In Fig. 5.26 we can observe that, for both injections,
the final multimessenger posterior is dominated by the contribution of the GW
mock signals and the estimate of α is ∼ 7 times more accurate in GW170817 case
compared to AT2017gfo (see values reported in Table 5.7 and 5.9).

Indeed, the procedure through which the α distribution is recovered from the
photometric data of the kilonova (see 5.17) is predominantly affected by the uncer-
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tainties on the NR fitted formula. These errors are mainly related to our incomplete
knowledge on the processes behind the kilonova and the lack of observational data.
However, this also underlines the importance for more sensitive instruments both in
the electromagnetic band and the GW band. Following the advancement of GW
interferometers new detections of NS-NS mergers will be observable, opening to the
possibility of studying kilonovae emissions in different mass and distance ranges and
broadening our understanding on the information they carry.

(a)

(b)

Figure 5.26. Posterior distribution of α obtained from GW170817 mock signal analysis
(blue), AT2017gfo mock signal analysis (red) and their multimessenger analysis (pink).
The vertical lines denote the medians (solid) and 68 % credible intervals (dashed) of the
distributions.
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Chapter 6

Conclusions

In this work we studied a variety of approaches to infer the properties of NS
nuclear matter from the signals produced by NS-NS mergers. In particular, our goal
was to exploit the emission of these events powered in different bandwidths, to build
a numerical pipeline which combines the information carried by the GW produced
during the inspiral, with the postmerger kilonova emission, within the framework of
Multimessenger Astrophysics. This was achieved by taking advantage of strategies
developed in Sabatucci et al. (2022) and Breschi et al. (2021) and by defining a
novel approach to infer joint constraints on a specific microphysical property of the
stellar equation of state, i.e. the amplitude of three nucleon repulsive interactions at
supranuclear densities. We have applied such strategy to simulated and real events,
focusing in particular on the data obtained for the first binary NS event, GW170817,
and its kilonova counterpart, AT2017gfo.

As reviewed in Chapter 2, the microscopic behaviour of NS matter, encoded by
the EoS, ultimately determines the star observable features, such as its mass, radius
and tidal deformability. The latter describes the response of the NS to external
tidal fields, which we discussed in a Newtonian and a Relativistic frame in Section
2.4. Tidal fields play a central role in the late stages of evolution of coalescing NS
systems, as they are strong enough to modify the binary orbital evolution and its
GW emission. Such effects are discussed in Chapter 3, in which we described how
tidal interactions affect the ejection of the neutron-rich material which produces
the kilonova, and leave a measurable imprint on the inspiral GW emission through
the tidal parameters Λ̃ (3.5) and δΛ̃ (3.6). These quantities, therefore, represent
promising channels of information on the EoS, which is still highly uncertain for
densities larger than nuclear saturation expected within stellar cores.

We focused on a specific EoS based on a non-relativistic many body nuclear
model, described in Section 2.3. This EoS was modified as in Maselli et al. (2021)
by introducing a free parameter, dubbed α , which determines the strength of the
three-body nucleon interactions, largely unconstrained by nuclear experiments above
the saturation density. This parameter also controls the EoS stiffness and thus, the
magnitude of the NS tidal deformability. One of the goals of the analysis carried out
in this thesis was to assess the sensitivity of GW observations to constrain α, and the
improvements that can be achieved in this regard by next-generation interferometers
compared to current facilities. For this purpose, after having introduced the statistical
framework of Bayesian inference in Chapter 4, we moved to the analysis of the GW
inspiral emission focusing first on simulated signals based on the properties of the
two events GW170817 and GW190825. Mock signals were injected in the noise
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strain of a network composed of LIGO Hanford, LIGO Livingston and Virgo at O4
design sensitivity, and of the Einstein telescope, a 3rd generation interferometer
expected to be online by mid 2030s. We assumed for such simulations two values
of α, corresponding to soft and stiff EoS, finding no significant differences in the
performance of the binary parameters estimation.

As a first step we recovered from the signals some of the NS-NS binary parameters,
namely their chirp mass, spins, symmetric mass ratio and tidal coefficients Λ̃ and δΛ̃ ,
using bilby , a numerical pipeline for GW Bayesian inference. Our results show that
measurements of Λ̃ significantly benefit from the introduction of ET. For the case
of GW170817 the uncertainty on this parameter at 68% credible interval decreases
from ∼ 10% to ∼ 5-4%, while for the case of GW190425 the change is even more
dramatic. Indeed, for the second binary event the tidal deformability is basically
unconstrained by HLV observations while it is constrained with an uncertainty of ∼
17 % at 68 % credible interval for the injection in ET. On the other hand, regardless
of the type of interferometer taken into account, no significant bounds could be
inferred on the tidal parameter δΛ̃ , which leads in general to a small effect on the
GW phase.

Next, we have used the Fortran code described in Section 4.5 which implements
the methodology proposed by Sabatucci et al. (2022), to perform the posterior
sampling of the three-body nuclear force amplitude from the posteriors obtained in
bilby for the binary tidal deformability Λ̃ and the symmetric mass ratio η . We
have observed that the improvements led by the introduction of ET on the posterior
of Λ̃ have a clear effect on the accuracy to which the injected value of α is recovered.
For the case of GW170817 mock signals, the uncertainty at 68% credible interval on
the value of α decreases approximately of a factor 3 passing from the injections in
the HLV network to the ones in ET (from ∼ 10% to ∼ 3-4%). On the other hand,
no significant constraint is posed on α for the injections of GW190425 in the HLV
network, similarly to what was observed for the recovered posterior of Λ̃ . However,
when the mock signals are injected in ET, α is recovered with an uncertainty of
∼ 10% at 68% credible interval. This analysis support and strengthen the idea that
3rd generation interferometers will represent a turning point on our understanding
of nuclear matter in the extreme densities reached in NSs cores.

In Section 5.2 we have explored a generalization of the numerical pipeline im-
plemented for the GW inference to the case of the kilonova AT2017gfo in order
to assess its sensitivity to the nuclear properties of the NS internal composition.
To this aim we exploited the results of Breschi et al. (2021) which, assuming an
anisotropic 3-component ejecta model, retrieved the posterior distributions of the
mass and velocity of the dynamical ejecta, mD

ej and vD
ej , from the photometric data

of AT2017gfo. Posteriors for mD
ej and vD

ej can be mapped into posteriors of Λ̃ and
the mass ratio q exploiting semi-analytic relations based on numerical relativity
simulations (Nedora et al., 2021). In this work we have reproduced the method
described in Breschi et al. (2021) developing an independent Python code which
implements the sampling of the posteriors of mD

ej and vD
ej derived from AT2017gfo

to obtain the posteriors of Λ̃ and q. After testing the compatibility of our results
with those originally derived by Breschi et al. (2021), we used such data to infer the
posterior of α . The latter showed that AT2017gfo tends to exclude very large values
of the three-body amplitude (≳ 1.57), i.e. very stiff EoSs. Next, we extended this
analysis to mock kilonovae signals, based on events with masses and spins similar
to those of GW170817 and GW190425, and assuming and equation of state with
either α =1 or α =1.5. While the results for GW170817 mock signals showed to
be informative on the injected value of α , the posteriors obtained for GW190425
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tended to mimic the prior bounds on the parameter, i.e to be uninformative.

In Section 5.3 we defined and implemented a new numerical pipeline through
which we (i) combined the information carried by the observed strain data of
GW170817 in the O2 run and the photometric data of AT2017gfo analysed in
Section 5.2, and (ii) attempted a generalization to the case of the mock GW and
kilonovae signals studied for GW170817. For the strain data of GW170817 in (i)
we evaluated the data likelihood as in Sabatucci et al. (2022) and found that the
obtained posterior for α for the GW data alone struggled to pose accurate bounds
on the value of α , with the posterior being sharply peaked around the lower bound
at α = 0.7 set by the prior. Moreover, our results seem in tension with the posteriors
derived in Sabatucci et al. (2022) from data collected by NICER observations of
rotating pulsars, which suggest a value of α around ∼ 1.4. We tried to tackle this
problem and alleviate the tension on α by exploiting a recent study of Gamba et al.
(2021) where the authors showed that the posterior obtained in Abbott et al. (2019)
could be affected by non-negligible waveform systematics at high frequencies. The
latter can be mitigated by lowering the sampling frequency of the signal from ∼ 4
kHz to ∼ 2 kHz. We repeated all our analysis using such frequency configuration,
finding a new posterior on α from the GW strain data of GW170817 which presents
a single peak, fully compatible with the results inferred in Sabatucci et al. (2022)
from NICER data. Moreover, the multimessenger distribution for α resulting from
the combination of this posterior with the one we inferred for AT2017gfo alone also
results to be compatible within the 68% intervals with the pulsar data.

Next, in (ii) we combined the posteriors obtained for the injections of GW170817
mock signals into the HLV network with the ones obtained for GW170817 mock
kilonovae in Section 5.2 to assess the individual contributions of the two signals to
the multimessenger estimate of α . Overall, the final posterior resulted dominated
by the contribution of the GW data. This can be interpreted as a consequence of
the lack of observational data on NS-NS mergers and kilonovae, which hamper an
accurate description of the the kilonova features in terms of binary properties, free
of modelling systematics. These sources of uncertainty are expected to be eventually
reduced with the introduction of more sensitive instruments in the GW and EM
band and the observations of new NS-NS mergers events.

The studies carried out in this work lay the ground for the development of a
comprehensive data analysis strategy which takes into account all possible signals
emitted by the coalescence, leading to a complete and accurate anatomy of binary
neutron star mergers. In this perspective, further applications of our approach
can be pursued following multiple directions. For instance, a natural extension
of this work would be the inclusion of the post-merger signal of NS-NS mergers
which remains unobserved for current detectors but represents a promising target for
next-generation interferometers. Indeed, if a NS-NS merger results in a long-lived
NS remnant the latter is expected to present a typical emission at ∼ 1.5-4 kHz,
which corresponds to the oscillation frequency of the so called f2 mode. The latter
represents an interesting channel of information for the "hot" EoS of the remnant and
a few approaches have been already tested for the combined analysis of the inspiral
and the post-merger signal (e.g. Wijngaarden et al. (2022)). For what concerns the
electromagnetic emission of NS-NS mergers, the GRB produced after the merger
could also provide new insights on the properties of NSs and their EoS (see for
instance Coughlin et al. (2019)). Finally, all these data could be combined exploiting
further sources, alternative to NS-NS mergers, as the pulsars observed by the NICER
satellite (see Maselli et al. (2021) and Sabatucci et al. (2022); Raaijmakers et al.
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(2021)), for a genuine multiband and multimessenger investigation of the nuclear
matter microphsycal properties.
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Appendix A

Example code in bilby

In the following we review step-by-step the code used for the benchmark injection
of GW170817 mentioned in 5.1.1.

Injection parameters. First, we define the injection parameters, i.e. the proper-
ties of the binary system which define the GW signal:

injection_parameters = dict(
mass_1_source=1.48, mass_2_source=1.26,\
chi_1=0., chi_2=0., luminosity_distance=40,\
theta_jn=2.56, psi=2.659, phase=1.3,
geocent_time=1187008882.43,\
ra=1.097*np.pi, dec=-0.13*np.pi,\
lambda_1=183, lambda_2=505)

Here mass_1_source, mass_2_source and chi_1, chi_2 are the stellar masses in
solar-mass units in the source reference frame1 and the dimensionless spin parameters;
luminosity_distance is the luminosity distance in Mpc; theta_jn, psi, phase
are the inclination angle between the observer line of sight and the orbital angular
momentum, the polarisation angle, and the phase of the GW; geocent_time is the
geocentric time at which the coalescence happens; ra,dec are the right ascension and
declination of the source and lambda_1, lambda_2 are the stars tidal deformabilities.
The phase, spins, and inclination angles are all defined at some reference frequency
(Romero-Shaw et al., 2020) (see Waveform parameters paragraph). Other pa-
rameters available in bilby describing a compact binary are listed in Tab. A.2 and
A.3. Note that injection_parameters is a dictionary (dict) object. Dictionaries
are frequently used in bilby . For instance, the priors of the various parameters
will be defined within a dictionary (see Parameter estimation paragraph).

Waveform duration and sampling frequency. The next step is setting the
duration of the injected signal, the sampling frequency and the time at which the
waveform has to be generated2:

duration = 2 * 32
sampling_frequency = 4 * 1024
start_time = injection_parameters[’geocent_time’] + 2 - duration

1To set the value of the two masses in the interferometers reference frame we should have written
instead mass_1, mass_2.

2The times are measured in seconds and the frequencies in Hz.
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Note that the duration of the signal is fixed to be 64s, of which 2s past the geocentric
time (the merger). The sampling frequency and the duration of the signal must
be taken into account when considering the computational costs of producing the
injected waveform. In fact, although the sampling frequency should be high enough
to clearly depict the frequency-evolution of the signal, having a high sampling
frequency and a long duration of the signal means more computational costs3.

Waveform parameters. Then, we need to specify some parameters concerning
the numerical waveform that is going to be generated:

fmin = 30.
waveform_arguments = dict(

waveform_approximant=’TaylorF2’,
reference_frequency=50., minimum_frequency=fmin
)

The waveform approximant represents the model based on which the waveform is
generated from the binary parameters. Different approximants are available based
on the physical effects they account for and/or on the different approximations they
rely on. The reference frequency, as mentioned in Injection Parameters, is the
frequency to which some of the injection parameters are defined (e.g. the spins).
Finally, the minimum frequency represents the starting frequency of the waveform.
In our case it is fixed to 30 Hz.
These parameters, as well as the ones defined in the previous paragraphs, are used
to produce the mock signal through the waveform generator:

waveform_generator = bilby.gw.WaveformGenerator(
duration=duration, sampling_frequency=sampling_frequency,
frequency_domain_source_model=
bilby.gw.source.lal_binary_neutron_star,
parameter_conversion=
bilby.gw.conversion.convert_to_lal_binary_neutron_star_parameters,
waveform_arguments=waveform_arguments)

In the waveform_generator definition are mentioned two additional input parame-
ters to the ones we have already discussed: frequency_domain_source_model and
parameter_conversion. The former is a function producing the frequency-domain
strain of the GW emitted from the signal injection parameters and the waveform
arguments discussed before4, while the latter translates the set of parameters defined
in bilby to the parameters defined in lalsuite, the LIGO Scientific Collaboration
Algorithm Library for gravitational-wave analysis (documentation at the link). Note
that waveform_generator produces the waveform polarisations independently of
the interferometer.

Interferometers. Let us set the interferometers in which we want to inject the
signal:

interferometers = bilby.gw.detector.InterferometerList(
[’H1’, ’L1’, ’V1’])

3This is why producing NS-NS coalescence waveforms is more costly from a computational
perspective than producing BH-BH coalescence waveforms: the former remain longer in the
sensitivity curves of the detectors (long duration) and their GW emission peaks at frequencies of
O(kHz) (high sampling frequency required).

4One can alternatively define a time_domain_source_model and get the time-domain strain.

https://lscsoft.docs.ligo.org/lalsuite/
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The interferometers network is made up by LIGO Hanford (H1), LIGO Livingston
(L1) and Virgo (V1). By default these interferometers operate at design sensitivity
and their properties (the minimum/maximum frequency detectable, the power
spectral density etc.) are listed in bilby repository documentation (link). However,
these default properties can be changed manually. For instance, in our case we need
to use the PSDs released on GWOSC for the detection of GW170817 in the O2 run
(link):

interferometers[0].power_spectral_density =
bilby.gw.detector.PowerSpectralDensity(psd_file=path_psd_LIGOH)

interferometers[1].power_spectral_density =
bilby.gw.detector.PowerSpectralDensity(psd_file=path_psd_LIGOL)

interferometers[2].power_spectral_density =
bilby.gw.detector.PowerSpectralDensity(psd_file=path_psd_Virgo)

Note that path_psd_LIGOH, path_psd_LIGOL and path_psd_Virgo represent three
strings containing the paths of the PSD files of the interferometers. The latter must
be formatted as following: one column listing the frequencies in Hz (to which the
interferometer is sensitive), and a second column listing the corresponding PSD
value. Furthermore, we require the minimum frequency of the detectors to be the
same as that of the injected waveform:

for ifo in interferometers:
ifo.minimum_frequency = fmin

After having defined the interferometers properties, we need to set the noise. For
instance, one can sample the noise directly from the PSD curve:

interferometers.set_strain_data_from_power_spectral_densities(
sampling_frequency=sampling_frequency, duration=duration,
start_time=start_time)

Note that the set_strain_data_from_power_spectral_densities returns a vec-
tor containing the noise strain of the interferometer sampled at sampling_frequency
over an interval of time long duration. In our case, however, we are interested in
performing a zero-noise injection:

interferometers.set_strain_data_from_zero_noise(
sampling_frequency=sampling_frequency, duration=duration,
start_time=start_time)

Moreover, we fix the random seed value right before the
interferometers.set_strain_data_from_power_spectral_densities call:

np.random.seed(10201238)

This is optional but it is done to guarantee the reproducibility of our analysis.

Signal injection. To inject the signal in the interferometers network we write:

interferometers.inject_signal(
parameters=injection_parameters,
waveform_generator=waveform_generator)

https://git.ligo.org/lscsoft/bilby/-/tree/master/bilby/gw/detector/detectors
https://dcc.ligo.org/LIGO-P1900011/public
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While to print out the strain detected by the three interferometers one can specify:

for ifo in interferometers:
print(ifo.strain_data.time_domain_strain)
print(’\n’)

Note that, before the injection, the object ifo.strain_data contains the noise
strain of the interferometer.

Parameter estimation. Having injected the signal in the network, we now review
how to recover the posteriors of the binary parameters we are interested in.
First, we define a dictionary object that contains the definitions of each parameter’s
prior:

priors = bilby.gw.prior.BNSPriorDict()

Here we have used one of the standard prior dictionaries available in bilby.gw.prior
(BNSPriorDict) whose keys are set to be the parameters defining a binary NS system
(source code available at this link).
Next, since we are not interested in sampling the inclination angle, the polarisation
angle, the right ascension and the declination, we write:

for key in [’psi’, ’ra’, ’dec’, ’theta_jn’]:
priors[key] = injection_parameters[key]

This way we are setting the values of these parameters to be equal to their injected
value, i.e. the prior is a delta function at the true, injected value. By not sampling
this subset of parameters we significantly reduce the computational cost of the
posteriors sampling procedure, while not invalidating the estimate of the other
parameters posteriors. Infact, the angular parameters are not strongly correlated
to the physical parameters that will be recovered and that characterize the binary
system.
If we want to cut out some parameters from the parameters space then we can use
the Python pop() built-in function on the the priors dictionary:

priors.pop(’mass_1’)
priors.pop(’mass_2’)
priors.pop(’lambda_1’)
priors.pop(’lambda_2’)
priors.pop(’mass_ratio’)

Finally, we set the priors of the remaining parameters:

priors[’chirp_mass’] = bilby.core.prior.Uniform(
1., 1.4, name=’chirp_mass’, unit=’$M_{\\odot}$’)

priors[’symmetric_mass_ratio’] = bilby.core.prior.Uniform(
0.18, 0.25, name=’symmetric_mass_ratio’)

priors[’lambda_tilde’] = bilby.core.prior.Uniform(0, 5000,
name=’lambda_tilde’)

priors[’delta_lambda_tilde’] = bilby.core.prior.Uniform(-5000, 5000,
name=’delta_lambda_tilde’)

https://lscsoft.docs.ligo.org/bilby/_modules/bilby/gw/prior.html#BNSPriorDict
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priors[’lambda_1’] = bilby.core.prior.Constraint(minimum=0,maximum=5000)

priors[’lambda_2’] = bilby.core.prior.Constraint(minimum=0,maximum=5000)

priors[’chi_1’] = bilby.core.prior.Uniform(-0.05, 0.05, name=’chi_1’)
priors[’chi_2’] = bilby.core.prior.Uniform(-0.05, 0.05, name=’chi_2’)

priors[’luminosity_distance’] = bilby.gw.prior.UniformSourceFrame(
name=’luminosity_distance’, minimum=20., maximum=1e2)

Here we have exploited some of the standard prior classes available in bilby .
The Uniform prior function returns a uniform distribution between the lower and
upper bounds specified as input parameters, while the Constraint prior function
is used to remove portions of the parameters space by setting constraints on the
range of possible values of a certain parameter. For instance, in this case we are
reducing the parameters space volume of lambda_tilde, delta_lambda_tilde by
constraining the possible values for lambda1, lambda2. In order for this to work one
must additionally specify the conversion relation between the constrained parameters
and the sampled ones. In our case a default conversion function between the tidal
parameters is defined within the BNSPriorDict object5.The name and unit optional
inputs are specified to assign the labels that will be plotted along with the posterior
of the sampled parameters.
We now move to define the data likelihood:

likelihood = bilby.gw.GravitationalWaveTransient(
interferometers=interferometers,
waveform_generator=waveform_generator,
time_marginalization=True, phase_marginalization=True,
distance_marginalization=True, priors=priors)

Here we are using the GravitationalWaveTransient function which computes the
log-likelihood in the frequency domain assuming a colored Gaussian noise model
(Thrane & Talbot, 2019). Note that we are marginalizing the likelihood over the
time of coalescence, phase and luminosity distance in order to reduce the runtime.

Posterior sampling. Having defined the priors and the likelihood, we can move
to sampling the parameter space:

result = bilby.run_sampler(
likelihood=likelihood, priors=priors,
sampler=’dynesty’, npoints=1000,
injection_parameters=injection_parameters,
outdir=’outdir’, label=’run_benchmarkGW17’,
conversion_function=
bilby.gw.conversion.generate_all_bns_parameters)

Note that the we are using bilby built-in dynesty fixing the number of live points
to 1000 (Speagle, 2020). Finally, to produce the corner plot of the results shown in
Fig. A.1 we must specify:

5Within a BNSPriorDict object there are also default conversion functions for the mass parame-
ters.
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result.plot_corner()

Figure A.1. Corner plot produced for the tutorial. The injected parameters are compatible
with the properties of event GW170817.
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Figure A.2. Tab E1 from Romero-Shaw et al. (2020) in which are reported the definitions
of parameters typically considered for compact binary coalescences inference in bilby
. Subscript i = 1, 2 indicates whether the parameter refers to the primary (1) or
secondary (2) binary object. Subscript k = x, y, z refers to a quantity measured in the
x, y ,or z direction; z points along the binary axis of rotation, while the x, y directions
are orthogonal to each other and z. Additional subscripts: ∗ – defined at a reference
frequency, † – parameter cannot be sampled, only generated in post-processing, × –
parameter cannot yet be sampled or generated in post-processing.

Figure A.3. Tab E2 from Romero-Shaw et al. (2020). Same prescriptions as Tab E1 in
Fig. A.2.
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